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INTRODUCTION

Planning for the Ig87 NASA/Army Rotorcraft Technology Conference was

launched during the NASA/Army 20th Anniversary Celebration at the Ames

Research Center, Moffett Field, California in September, 1985. The Ames

Research Center is the lead center for NASA rotorcraft research and also the

location of the U. S. Army Aviation Research and Technology Activity

headquarters.

At the conclusion of his prepared remarks during the anniversary

ceremonies, Dr. Raymond S. Colladay, NASA Associate Administrator for

Aeronautics and Space Technology, called for a joint NASA/Army rotorcraft

conference, as a follow-up to the twentieth anniversary, that would focus on

the status of rotorcraft technology resulting from research progress over the

previous five to ten years. The last major conference of this type had been

held at the Langley Research Center in 1974 in cooperation with the American

Helicopter Society. Prior to 1974 there had been a series of helicopter and

V/STOL conferences sponsored by the U. S. Army and by NASA, and NACA, on a

periodic basis.

The objective of conferences of this type is to provide a forum where

summary technical papers are presented by invited researchers to key technical

management staff representatives from government and industry. The

conferences provide a milestone event to address the technology base

contributions of ongoing research efforts. These conferences emphasize

advancements in technical knowledge, while programmatic overviews and future

plans are left to other routine briefings, meetings, workshops, and symposia

that normally occur on a more frequent basis.



The Army and NASA have been conducting rotorcraft research under a

very successful collocated laboratory arrangement since the 1960's. As a

result, the joint sponsorship of a major technology conference was a natural

outgrowth of this partnership a three aeronautical research centers: the Ames

Research Center, Moffett Field, California; the Langley Research Center,

Hampton, Virginia; and the Lewis Research Center, Cleveland, Ohio.

To an ever increasing degree, the government rotorcraft research

effort is closely coordinated with the in-house research conducted by the

U. S. helicopter industry. In recognition of this relationship, the industry,

through the participation of the American Helicopter Society, was invited to

present highlights of notable technology accomplishments resulting from

industry-funded research efforts.

This three-volume conference proceedings document contains over

thirty technical papers which were summarized in oral presentations on

March 17-]9, 1987. The organization of the proceedings is similar to the

conference agenda. That is, Volume I contains technical papers addressed on

March 17, 1987 covering the two disciplinary session topics of Aerodynamics,

and Dynamics and Aeroelasticity. Volume II, the March 18 material, includes

the four session topics of Materials and Structures, Propulsion and Drive

Systems, Flight Dynamics and Control, and Acoustics. Volume III contains the

material from the third and final day of the conference, March 19, 1987. This

third volume contains papers that were addressed in the three concluding

sessions: Systems Integration, Research Aircraft, and the Industry Session.



AERODYNAMICS
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William G. Warmbrodt, NASA

William J. McCroskey, Department of the Army



AERODYNAMICS SESSION

SUMMARY

The first paper from the Aerodynamics Session, "Accomplishments of

NASA Langley Research Center in Rotorcraft Aerodynamics Technology" by John C.

Wilson, described noteworthy accomplishments in rotorcraft technology in the

areas of rotor design, airfoil research, rotor aerodynamics, and

rotor/fuselage interaction aerodynamics. The paper focused on key Langley

Research Center facilities including the 14- by 22- Foot Subsonic Tunnel, the

Transonic Dynamics Tunnel, and a 6- by 28- Inch Transonic Facility.

The second presentation, "The Development of CFD Methods for Rotor

Applications" by F. X. Caradonna and W. J. McCroskey, outlined the recent

developments in computational fluid dynamics (CFD) methodology as a new tool

for the prediction of advancing blade transonic flow aerodynamics and the

application of these methods to investigate this persistent limitation to

high-speed rotor performance.
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N88-16626
ACCOMPLISHMENTS AT NASA LANGLEY RESEARCH CENTER

IN ROTORCRAFT AERODYNAMICS TECHNOLOGY

John C. Wilson

U.S. Army Aerostructures Directorate,

Langley Research Center

SUMMARY

In recent years, the development of aerodynamic technology for rotorcraft has

continued successfully at NASA LaRC. Though the NASA Langley Research Center

is not the lead NASA center in this area, the activity has been continued due

to the unique facilities and individual capabilities which are recognized as

contributing to helicopter research needs of industry and government.

Noteworthy accomplishments which contribute to advancing the state of

rotorcraft technology in the areas of rotor design, airfoil research, rotor

aerodynamics, and rotor/fuselage interaction aerodynamics are described. New

rotor designs have been defined for current helicopters and evaluated in wind

tunnel testing. These designs have incorporated advanced airfoils defined

analytically and also proven in wind tunnel tests. A laser velocimetry system

has become a productive tool for experimental definition of rotor inflow/wake

and is providing data for rotorcraft aero ynamic code validation.

INTRODUCTION

Since the time that NASA Ames was designated as the lead Center for rotorcraft

technology, the activity in rotorcraft aerodynamic technology has been carried

on by the U.S. Army Aerostructures Directorate at Langley. Though at a

reduced level because of less manpower and resources, significant work has

been accomplished in analyses and experimentation for rotorcraft

aerodynamics. For the latter activity there are two key facilities at

Langley--the 14- by 22-Foot Subsonic Tunnel shown in figure I (formerly the 4-

by 7-Meter Tunnel - and earlier the V/STOL Tunnel) and the Transonic Dynamics

Tunnel shown in figure 2. At the 14- by 22-Foot Subsonic Tunnel, the

Rotorcraft Aerodynamics Office comprised of a group of Army aerospace

engineers has been performing pioneering work in rotor aerodynamic and

acoustic analyses and experimentation. At the Transonic Dynamics Tunnel,

another group of Army engineers, the Rotorcraft Aeroelasticity Group, pursues

similar interests in rotor dynamics as well as in aerodynamics.

Both facilities have unique capabilities for helicopter technology

developments. The 14- by 22-Foot Subsonic Tunnel can be operated with either

an open- or closed-throat test section by raising or lowering the side walls,

ceiling and floor. Typically, for laser velocimetry measurements of rotor

inflow or for rotor acoustic measurements, the open-throat configuration, with

floor in place, is used. Wind speeds of up to 200 knots can be generated in

the 14.5 ft. high by 21.75 ft. wide test section. Acoustic reverberations in

the open-throat test section are reduced by use of sound-absorbing panels on

the test chamber walls surrounding the test section. A specially designed

laser-veloclmeter ("LV") laboratory for set-up (beam alignment and operation)

and maintenance of a dedicated LV system is adjacent to the test section and

PRECEDING PAGE BLANK NOT FILMED



affords efficient preparations for testing. A new rotor model preparation

area near the tunnel provides the capability to assemble and test rotor models

in hovering conditions prior to actual entry into the tunnel test section.

In 1985, modifications (figure 3) to the 14- by 22-Foot Subsonic Tunnel were

completed and have improved and expanded its aerodynamic and acoustic test

capability (refs. I and 2). One of the more significant aerodynamic

improvements was achieved through the use of flow deflectors installed

downstream of the first corner of the tunnel circuit to improve the

performance of the tunnel fan. The deflectors resulted in a more uniform

velocity distribution into the tunnel drive system and eliminated regions of

large-scale flow separation in the return leg of the tunnel circuit. A new

turbulence reduction system consisting of a grid, a honeycomb, and four fine-

mesh screens dramatically reduced the level of longitudinal turbulence

intensity in the tunnel test section. The turbulence in the closed test

section was reduced from nominally 0.2% to 0.1% as shown in figure 4. In the

open test section, turbulence of nominally 10% was reduced to a level of only

I% (figure 5). The 10% level in the unmodified tunnel was caused by periodic

flow pulsations which were eliminated by installing a new flow collector in

the open test section.

The Transonic Dynamics Tunnel (TDT) is also unique (refs. 3 and 4) in its

capabilities for model rotor testing as is illustrated in figure 6. It can

use "Freon-12," a heavy gas with a low speed of sound, as the test medium.

The tunnel was originally designed to test large dynamic models for the

simulation of important aeroelastic structural properties of fixed-wlng

aircraft at transonic speeds. The TDT is a continuous flow tunnel and can be

operated with freestream Mach numbers up to 1.2 and dynamic pressures ranging

up to 550 psf. The present capability (figure 7) of the tunnel is the result

of modifications completed in 1985. Model rotor testing for performance and

rotor-system dynamics takes advantage of these flow characteristics to provide

scale simulation of rotor tip Mach number and high Reynolds number. Using

Freon 12 as the test medium allows this simulation to be accomplished with

substantially reduced requirements for model power and rotor blade spar

strength as compared to testing in air (figure 8). Another feature of the

tunnel which is useful for rotor research is an airstream oscillator system.

A simulated gust field may be applied to the flow through the test section in

the form of a sinusoidal oscillation of the flow direction. The oscillating

flow is generated by a biplane arrangement of vanes on either side of the

entrance to the test section. Both frequency and amplitude of vane motion can

be varied to generate a wide range of gust characteristics. These features of

TDT have made it an extremely useful tool for aerodynamic and dynamic research

for helicopter technology.

A very specialized facility for rotor airfoil development is the Langley 6- by

28-Inch Transonic Tunnel (ref. 5 and 6). This facility is a blowdown tunnel

with a slotted floor and ceiling and is generally operated at stagnation

pressures from about 30 psia to 90 psia at Mach numbers from 0.35 to 0.90. At

a stagnation pressure of 90 psia, the _aximum Reynolds number, based on a 6.0
inch.chord, varies from about 7.2 x 10v at a Mach number of 0.35 to about 14.3

bx 10 at a Mach number of 0.90.

The facilities just described are key to the experimental work in rotorcraft

aerodynamic technology developments at Langley, and they are complemented by



model rotor test systems especially suited to the special capabilities of each
of the facilities. The "General Rotor Model System" (GRMS)shown in figures 9

and 10 (ref. 7), and the "Two Meter Rotor Test System" (2MRTS) shown in figure

11 (ref. 8), are used in the 14-- by 22-Foot Subsonic Tunnel; in the TDT, the

"Aeroelastic Rotor Experimental System" (ARES) (figure 12) is used. The GRMS

has been used to test rotors with diameters of 10 to 13 feet and rotor

diameters for the 2MRTS have ranged from 5 feet to 6.5 feet. Both systems

test rotors at full-scale tip speeds. On the ARES, the rotors are generally 9

feet in diameter. All three systems have been "work horses" and have been

used in many experimental programs described in this paper.

Aerodynamic analyses are conducted as an essential adjunct to the experimental

activity. These analyses are used to guide the experimental work in setting

test objectives, and are themselves evaluated by the experimental results.

The analyses treat the many aspects of helicopter design such as airfoils,

rotor performance, rotor blade loads, and the interaction of rotor, airframe,

and rotor inflow/wake. Computational codes developed by other research

organizations are being used, but, code development is being carried on at

Langley as well. Some of the codes in common use include the UTRC Free Wake,

CAMRAD, VSAERO, HESS, AMI HOVER, C-81, Langley momentum hover program, and

Langley DO 865. A varle_y of computers, from desktop personal computers to

highly sophisticated mainframes such as the Control Data VPS-32, are available

and used in rotorcraft aerodynamic analyses.

The following discussion is a review of some of the results of experimental

and analytical work in rotorcraft aerodynamics which has been accomplished

using the various capabilities at the NASA Langley Research Center.

DISCUSSION

Rotor Design

Over the past seven years, rotor design efforts have been directed toward an

optimum combination of airfoils, planform, and twist (ref. 9) to provide

advanced rotor designs for possible use on the UH-I (figure 10, ref. 10), the

AH-64 (figure 13, ref. 11), and the UH-60 (figure 12). The designs were

evaluated in wind tunnel tests of models of the proposed rotors. The most

distinctive feature of these rotor designs is the use of substantial taper of

the rotor tip as much as 50 percent for the UH-I design . Analyses by Gessow

(ref. 12) many years ago showed that rotor hover performance could be improved

by blade taper; this design philosophy was implemented with a rotor design for

the UH-I helicopter. Tests of a 25-percent scale model of the tapered rotor

were conducted along with a model of the standard rotor in the 14- by 22-Foot

Subsonic Tunnel using the GRMS. The test results validated the analytic

prediction in that rotor performance for the advanced rotor was superior to

that of the standard rotor, from hover up to 110 knots as shown in figures 14

and 15. Unfortunately the rotor hub (a 25%-scale model of the UH-I hub) broke

due to a fabrication flaw before the advanced design could be tested at a high

thrust level (substantially higher than that for level flight at the design

gross weight).

This specific approach to testing, in which one design is compared to another

during the same test program under the same test conditions provides



confidence in the results. By comparing rotor measurementsobtained with the
samerotor drive system, and data acquisition and reduction system,
incremental effects (i.e. performance benefits) are more reliably defined.
This approach was used for tests of AH-64 and UH-60 advanced designs.

The advanced AH-64 design shownin figure 13 also used an analytically defined
optimum combination of taper, airfoils, and twist. Model rotors were
fabricated at 27-percent scale for both the baseline (rectangular with swept
tip) and advanced designs, and both rotors were tested with models of the AH-
64 hub and fuselage at the samescale. All componentswere mounted to the
GRMSand tested in the Langley 14- by 22-Foot Subsonic Tunnel. As was the
case for the UH-I, the advanced design resulted in improved performance
throughout most (ref. 11) of the normal operating envelope of the rotor (See
figures 16 and 17). At high thrust coefficient in hover, the improvement in
figure of merit maydecrease to zero. The taper of the original advanced
design was 5 to I, starting at 80 percent radius and it was suspected that
reducing the amount of taper to 3 to I would improve hover performance. The
blade tips were altered to the reduced taper, and hover tests were conducted
in the new rotor test cell at the 14- by 22-Foot Subsonic Tunnel. The reduced
taper resulted in a hover performance improvement as can be seen in figure
16. It should be realized that the improvement due to reduced taper may be
the result of Reynolds number effects and not just taper. Evaluation of
forward flight performance for the 3 to I taper will be conducted at a future
time.

The change of taper for the AH-64was based on results of exploratory tests
which had been conducted on smaller scale tapered blades using the 2MRTS
system. Hover tests of three different four-bladed rotors were conducted in
the tests of reference 13 to evaluate whether a prescribed wake code could
properly predict trends for tapered blades. The three were a swept-tip design
based on the UH-60rotor design, a configuration with 3-to-I taper over the
outboard 20 percent of the blade span, and a configuration with a 5-to-I taper
over the outboard 20 percent of the blade span. The investigation covered a
range of tip speeds and thrust levels. The two tapered configurations had
better hover performance than the baseline swept-tip configuration, and the 3-
to-1 taper configuration was somewhatbetter than the 5-to-I configuration as
shown in figure 18. The test results were comparedwith predictions madeby
using a prescribed wake analysis, a momentumstrip-theory analysis and a
simplified free-wake analysis. The performance of the baseline blade was in
fair agreement with predictions from both momentumstrip-theory analysis and
the prescribed-wake analysis when appropriate low Reynolds numberairfoil data
were used. The performance of the two tapered-blade configurations was in
fair agreement with the prediction of the momentumstrip-theory analysis;
however, the prescribed-wake analysis incorrectly predicted performance that
was muchworse than was measured for the two tapered configurations.

The art of designing "advanced" rotor blades was next applied to the UH-60. A
new design incorporating wide blade chord, tip taper, new airfoils, and
different twist was defined and tested with the ARESin the TDTtunnel as
shown in figure 12. As expected, the advanced rotor design demonstrated
better performance than did the baseline UH-60design. The test results will
be published. These three experimental programs of wind-tunnel testing of
advanced designs for the UH-I, AH-64, and UH-60have demonstrated that rotor

I0



blades incoporatlng substantial planform taper, advanced airfoils, and
substantial twist will provide significant performance improvements in hover
and forward flight.

Designing of advanced rotors such as those described has involved a tedious
exercise of rotor performance codes as the three basic design variables of
planform, airfoil, and twist were varied to homein on a "best" combination to
meet specified performance requirements. But the efforts have paid off in the
improved rotor thrust capability available in hover and increased efficiency
in forward flight as demonstrated in the model test programs for the UH-I, AH-
64 and UH-60. It should be realized that the percentage improvement in thrust
is multiplied by a factor of 3 to 5 when useful load capability improvement is
considered. In the last couple of years a more systematic approach for the
design process has been initiated at Langley (Ref. 14). The Interdisciplinary
Research Office has been tasked with the responsibility of integrating the
computer codes into a formal optimization procedure for helicopter rotor blade
designs. The proposed approach is to couple hover and forward flight analysis
programs with a general purpose optimization procedure. The time and cost of
designing rotor blades can then be significantly reduced to gain improvements
such as demonstrated for the UH-I, AH-64, and UH-60.

A cooperative wind-tunnel test program was recently conducted at the Glenn
Martin Wind Tunnel (figure 19) by the Aerostructures Directorate and the
University of Maryland to investigate in more detail the effect of tapering of
rotor blades on rotor forward flight performance. Analysis with the C-81 code
indicated that taper beginning at about 94%blade span resulted in the lowest
power required and, therefore, rotor performance improvements seen in earlier
programs were, perhaps, attributable only to advanced airfoils and twist
variations (ref. 15). However, the tests provided results which were contrary
to the C-81 analysis that is, for high speeds as well as hover, tapering of
blades inboard of 94%blade span is beneficial.

Rotor Airfoils

The advanced design rotors have incorporated modern airfoils (ref. 16 through

22) designed for rotor applications and tested at the Langley Research Center

in the 6- by 28-Inch Transonic Tunnel. A great deal of airfoil design work

over many years has been conducted at Langley for fixed wing aircraft, but

interest in rotorcraft applications has been relatively recent (in the last 15

years). Of course, designing airfoil sections for a helicopter rotor is more

complex than that for a fixed wing aircraft since a rotor airfoil can

experience lift coefficients from negative values to the maximum positive

value, and Mach numbers from low subsonic to transonic values all in one rotor

revolution. Further, since the ranges of lift coefficients and Mach numbers

depend on the radial location along the rotor blade and the helicopter flight

condition, different airfoils need to be identified for specified ranges of

radial positions along the rotor blades. Designing airfoils within the

plethora of constraints is an art which has reached a high level of

sophistication. At Langley two notable airfoil families for helicopter rotor

application have been patented (ref. 21 and 22).
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Rotor Inflow and Wake Studies

Defining the inflow to a rotor is a key element in predicting the performance,

blade loads, and acoustic characteristics of a rotor. Also, defining the wake

generated by the rotor is important in estimating helicopter fuselage

aerodynamics. Unfortunately for helicopter designers, the analyses for

definition of inflow and wake effects have little experimental data to

validate them. Though some work in rotor inflow and wake measurement has been

accomplished by Heyson (ref. 23), Landgrebe (ref. 24), De Sopper (ref. 25) and

McMahon (ref. 26), much more is needed to provide a comprehensive database

describing the time dependent and azimuth dependent flow characteristics. In

the last several years the experimental capability needed to acquire such data

has been built up at the Langley 14- by 22-Foot Subsonic Tunnel and centers

around the use of a high powered laser velocimeter (LV) system (ref. 27). The

LV system shown in figure 20 is dedicated to the facility, and was built up by

personnel of the Rotorcraft Aerodynamics Office.

The LV is a dual-color four-beam fringe type system operating in a back

scatter mode. Positioning of the measurement point within a cube of

approximately 2 meters on a side is accomplished with a combination of

rotation of mirrors and movement of the entire LV system enclosure within the

large traverse apparatus shown in figure 20. Rather complex subsystems for

remotely controlling the measurement point, acquiring the data, and reducing

the data to engineering units have been developed by the researchers, and they

functioned extremely well in recent test programs (ref. 28) to obtain

measurements of rotor inflow. Because the LV system is dedicated to research,

there is an ongoing program of system enhancements to accelerate the data

acquisition process. For example, the flow seeding system presently requires

manual translation of a large spray array located in the tunnel settling

chamber. Even with this limitation, however, it provided excellent data rates

(number of particles passing through the measurement point per unit time) with

1.7 micron particles. The manual system will be replaced with a remote

positioning system which will speed up the process of obtaining high data

rates. Also, the Langley Instrumentation Research Divison which has

contributed to the development of the current LV system has been provided

funding for the definition of modifications to obtain a third velocity

component.

In its current state the LV system has made it possible to begin mapping the

inflow of generic research rotors, and to assess the effect of blade geometry

(such as rectangular and tapered planforms) on rotor inflow characteristics

(figure 21). Two programs have been conducted this past year and a sampling

of the data obtained is shown in figure 22. The data include a full mapping

of the rotor disc at approximately I blade chord above the rotor tip-path

plane. Figure 22 provides a three-dimensional view of average inflow normal

to the rotor disk. The time-varying inflow at a point is shown in figure

23. With each model entry, system enhancements have been made and will

continue to be made with a view toward investigating the effects of variations

of the many parameters such as advance ratio, thrust coefficient, blade

number, blade planform, and proximity to the rotor. The early data obtained

have already been compared with some of the many coded predictions of inflow

for validation of the codes (ref. 28).
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Rotor/Fuselage Aerodynamic Interaction

The rotor and fuselage interact aerodynamically in a very complex way and

there is presently a paucity of test data to validate the analyses currently

used to quantify the interaction effects (refs. 26 and 29). To remedy the

situation two helicopter models with generic fuselage shapes have been

instrumented with miniature transducers and in recent tests at the Langley 14-

by 22-Foot Subsonic Tunnel, time dependent pressures were measured to

investigate the influence of the rotor wake. In the most recent program a two

bladed rotor with over 100 miniature pressure transducers on the blades

(figure 24) provided high quality data which are being used to evaluate

wake/fuselage interaction codes. Simultaneous measurements of pressures on

the blades and fuselage were obtained, along with measurements of blade loads.

Flow distortions caused by the fuselage affect rotor inflow, and the rotor

wake in turn affects fuselage pressure distributions. Both average and time-

dependent distortions are the result of these mutual perturbations. The

extent to which interactional aerodynamics can influence helicopter vibrations

was not sufficiently appreciated until recent years when the new series of

military helicopters (AH-64, UH-60) began to experience more pronounced

aerodynamically excited vibrations. Analytical methodology to predict and

study the interactional causes and effects, particularly those related to the

time- dependent excitations effecting vibrations, has not yet been fully

developed, although, in recent years significant progress has been made toward

the development of computerized methods which can take into account the large

array of variables which need to be considered.

Two analytic approaches are being studied at Langley. One of these is a

contractual effort with UTRC which is leading to a method for a flrst-order

treatment for vibration purposes as represented in figure 25. In this

approach, a rotor aeroelastic analysis ("G400, code) for predicting rotor

aeroelastic response characteristics, a rotorcraft wake analysis ("RWA" code)

for predicting rotor blade and wake induced airflow velocities, and an

analysis predicting fuselage pressure distribution ("WABAT" code) are being

integrated to predict interactional excitations for vibration analysis. The

separate codes are being extended where necessary to model blade, wake, and

fuselage surface pressures (including empennage surfaces). It should be

recognized that the aerodynamic interactions are very complex and are

influenced by features such as hub/pylon separated wake and tail rotor

interactions which are beyond the scope of the initial study. It is not a

complete treatment, by any means, but it is providing a framework for future

refinements.

A second approach to modeling analytically the rotor/fuselage interactive

aerodynamics is being developed in which an existing general panel method

("HESS" code) for calculation of flow about arbitrary shapes is being combined

with a model ("Crispin" code, ref. 30) of the rotating blade system. The

geometry of the rotor wake is computed with the Crispin code and allowed to

contribute to the flow field of the total configuration. The integration of

the two codes has required substantial changes to both. The capabilities of

the Crispin code have been extended by providing for a two-bladed rotor and

including a means of accounting for cyclic pitch variations. The wake

13



prediction of the code is shownin figure 26. Both analytic codes are being
developed with the objective of being validated by experimental data obtained
in the Langley 14- by 22-foot Subsonic Tunnel.

Interactional aerodynamic problems of helicopters are sometimes of a
comparatively minor nature and involve separated flows so that experimental
methods are the most effective meansof study. Onesuch problem is identified
in references 31 through 33, and a simple solution is proposed in reference
34. A single-main-rotor helicopter being flown at low speeds has the tail
boomimmersedin the rotor wake. Whenflown in right sideward flight, the
aerodynamic pressures on the tail boomresulting from the high downwash
velocities of the wake can result in adverse side loads on the boom. The side
loads contribute a yawing momentwhich may be beyond the capability of a tail
rotor to counteract since it is already burdened by the need to connteract the
main rotor torque. Such a limitation has been experienced by the AH-64, AH-
IS, and the British Sea King helicopter. A spoiler (or strake) mountedon the
upper left shoulder of a tail boomas shown in figure 27 has been shownto be
effective in reducing the tail boomyawing moment, thereby improving heading
control in sideward flight as shown in figure 28 for the SH-3.

Diagnostic Testing Activities

In addition to the fundamental research studies discussed so far, Army

researchers at the Aerostructures Directorate are occasionally asked to

investigate the causes of aerodynamic problems encountered in Army helicopter

operations, or to develop solutions to problems whose causes have been

identified in field operations. The availability of several helicopter

modeling systems and full-scale components, along with the wind tunnels and

computational capability at the NASA Langley Research Center have made it

possible for Aerostructures Directorate researchers to respond quickly to Army

needs. Two recent experimental efforts illustrate typical diagnostic testing

conducted by researchers at the 14- by 22-Foot Subsonic Tunnel. One of these

efforts addressed a concern regarding the AH-64 and the other focused on the
UH-60 stabilator.

The AH-64 "Apache" is vulnerable, as many helicopters are, to being blown over

by high winds when it is parked but not tied down, but the extent to which the

Apache was subject to this danger was not known. A large AH-64 model was

tested in the 14- by 22-Foot Subsonic Tunnel as shown in figure 29 to study

this problem in detail. The model was yawed through a range of -20 to +160

degrees, and the wind loading which could tip the helicopter over was

evaluated. Figure 30 shows tests results in terms of the combination of

critical wind speed and azimuth for which tipover could be expected to

occur.

A second study used a full scale UH-60 stabilator to measure the alrloads

which can occur at a combination of high flight speeds and high tail

incidence. If the large UH-60 stabilator is inadvertently deflected to high

incidence at high flight speed, the resulting pitching moment about the center

of gravity would be beyond the capability of the pilot to counteract through

rotor cyclic control. A flightworthy stabilator was installed in the tunnel

(figure 31), and the airloading on the basic stabilator was measured. Various

small spoilers were attached near the leading edge to reduce the lift load at

high incidence. Though spoilers were not very effective at angles of attack

14



near 45°, they were very effective at angles of attack of between 10 and 20°
where the problem of uncontrollable pitching momentis more likely to occur•
Figure 32 summarizesthe results of the tests on the UH-60stabilator.

CONCLUDINGREMARKS

The Aerostructures Directorate of USAARTA(AVSCOM)has continued to utllze
capabilities in facilities, equipment, and personnel at Langley to make
significant contributions to rotorcraft technology. These contributions cover
a broad range of research in several areas, including rotor design, rotor
airfoils, and rotor/fuselage interactional aerodynamics. Additional testing
activities are also conducted to address operational needs on a quick response
basis. Key facilities which aid in accomplishments in these facets of
helicopter aerodynamics are NASALangley's 14- by 22-Foot Subsonic Tunnel, the
Transonic Dynamics Tunnel, and the 6- by 28-Inch Transonic Tunnel.
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Figure 1 1 .  Installation of AHIP model on the 2MRTS in the 

14- by 22-Foot Subsonic Tunnel. 

Figure 12. Installation of ARES with advanced design UH-60 rotor 

blades in the Transonic Dynamics Tunnel. 
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F i g u r e  1 4 .  Hover pe r fo rmance  ( f i g u r e  of merit) improvement 

f o r  t h e  advanced  d e s i g n  UH-1 r o t o r .  
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THE DEVELOPMENT OF CFD METHODS FOR ROTOR APPLICATIONS

F. X. Caradonna and W. J. McCroskey
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Moffett Field, CA 94035-1099

The optimum design of the advancing helicopter rotor for high-speed forward

flight always involves a tradeoff of transonic and stall limitations. However, the

preoccupation of the rotor industry was primarily concerned with stall until well

into the 1970s. This emphasis on stall resulted from the prevalent use of low-

solidity rotors with rather outdated airfoil sections. The use of'cambered airfoil

sections and higher-solidity rotors substantially reduced stall and revealed the

advancing transonic flow to be a more persistent limitation to high-speed rotor

performance. Work in this area was spurred not only by operational necessity but

also by the development of a new tool for the prediction of these flows--the methods

of computational fluid dynamics (CFD). The development of CFD for these rotor prob-

lems has been a major Army and NASA achievement--accomplished mainly via the origi-

nal joint Army/NASA agreement at Ames Research Center. This work is now being

extended to other rotor flow problems. These developments are outlined in the

following discussion.

Development of Rotor Flow Codes

The first Army research on transonic flow began at NASA Ames Research Center in

1970 and closely followed the rapid developments in CFD work at NASA--most notably

the work of Steger and Lomax (ref. I). The first transonic rotor computations,

those of Caradonna and Isom (ref. 2), came from this Army research. These computa-

tions involved the casting of the potential equation in blade-fixed rotating coordi-

nates and then invoking the classical small perturbation approximation. Solutions

were obtained by using the recently developed mixed differencing approach. These

were steady, three-dimensional relaxation solutions of nonlifting hovering rotors

with rectangular planforms. These computations revealed the onset and development

of shocks with increasing radius. The tip relief of these shocks was also shown to

be strongly affected by the aspect ratio (fig. I). This work was extended by

Ballhaus and Caradonna (ref. 3) to the treatment of nonrectangular planforms. This

work had significant design implications in that it demonstrated that the proper

choice of profile and planform are strongly interdependent on one another

(fig. 2). The Army computational program was extended by Caradonna and Isom

(ref. 4) to the treatment of unsteady flows in 1975. In this work the unsteady

three-dimensional, small-disturbance-potential equation was solved. This work was

unusual for unsteady solutions in that it used relaxation methods, that is, each

time step was solved iteratively. It was shown by this means that transonic flows
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are intrinsically unsteady and even a nonlifting transonic rotor flow displays
considerable unsteadiness due to the varying incident Machnumber that an advancing
rotor encounters (fig. 3).

These unsteady computations demonstrated the importance of unsteadiness to the
transonic rotor problem. However, the solution method was not very efficient. A

more promising approach to unsteady transonic computations was soon developed by

Ballhaus and Steger (ref. 5). Their approach was to perform a time linearization of

the small perturbation equations. This linearization obviated the need for itera-

tion because the nonlinear coefficients were completely determined by the previous

time-step. They further streamlined the method by replacing the relaxation solution

with an approximate factorization (AF) algorithm which was applied to the low fre-

quency form of the transonic small-perturbation equations. The AF approach was much

faster than relaxation because it imposed no limits on the speed of propagation of

numerical information. This approach was soon applied to rotor problems by

Caradonna and Philippe (ref. 6). This paper was significant on two accounts:

(I) It described rotor computations which simulated the full unsteady-rotor

environment, that is, with unsteadiness caused by both Mach number and angle of

attack variation (fig. 4). (2) Actually, the most important facet of this paper is

that it contained the first experimental confirmation of the unsteady transonic

computations (fig. 5). By 1980, this work had been extended to three dimensions

(refs. 7, 8) and the development of small perturbation algorithms had essentially

reached its present state. Further computational algorithm developments required

more exact flow models.

The obvious next step was the development of a full-potential rotor code. This

was first accomplished by Arieli and Tauber (ref. 9), who cast the nonconservative,

steady full-potential equation in rotating coordinates and modified the fixed wing

code, FL022, to obtain solutions. The resulting code, called ROT22, is probably the

most-used finite-difference code in the rotor industry. Its limitation to quasi-

steady solutions has not diminished its usefulness to various comparative design

studies. However, unsteady full-potential codes have since been developed. One of

these codes, developed by Chang, is the outgrowth of a quasi-steady code, TFARI

(ref. 10), which solves the same nonconservative equation as in the ROT22 code.

However, whereas ROT22 used a relaxation procedure, TFARI uses an approximate facto-

rization approach. Not only is the AF scheme more efficient, but it is readily

extended to include the unsteady terms. This has been done in the code TFAR2

(ref. 11, 12). All of the above full-potential treatments have been nonconserva-

tive, that is, mass conservation cannot be guaranteed at shocks. This problem was

solved in 1980 by Steger (ref. 13) with the development of an AF algorithm to solve

the unsteady, conservative full-potential equations. This algorithm was subse-

quently developed into the fixed wing code, TUNA, by Bridgeman in 1982 (ref. 14).

This code was finally developed into the full-potential rotor code, FPR, by Strawn

(ref. 15) in 1986. The code FPR represents the latest and most complete of all the

potential rotor codes. Its main limitation (like all potential methods) is an

inability to treat shock-induced vorticity or very strong (involving separation)

blade/vorticity interactions. For these problems Euler and Navier-Stokes methods

are necessary.
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Euler rotor codes are still in their infancy. However, a very promising begin-
ning is to be seen in the work of Chang (ref. 16). He has used a centered finite-
volume approach to solve the Euler equations in the blade-fixed coordinate frame.

To summarize rotor code development, one must say that it has followed the
fixed wing work and has progressed unabated for the past fifteen years. As a
result, there are several available codes. The small disturbance code, FDR, which
is the simplest and most efficient, models the essential unsteady physics and is
accurate for high-Mach-number low-lift solutions. The ROT22and TFARI codes (quasi-
steady nonconservative) are the best codes to handle high lift solutions where
unsteady effects are not dominant. As TFAR2is an unsteady code, it has no such
limitation; it has produced excellent unsteady results in spite of its nonconserva-
tive formulation. The problem of nonconservative formulation has been rectified in
the code FPR, which is the most general full-potential code, and is readily avail-
able. These potential codes are by far the fastest approach to predict transonic
flows. However, for problems entailing very strong shocks or requiring detailed
modeling of the near wake, Euler and Navier stokes methods are required and are
under advanced development. TFAR3(ref. 16) is an outstanding example of this line
of development. There is now no lack of available codes. What is required now is
the development of the techniques to use these codes in the overall rotor-flow-
prediction process.

Prediction and Verification of Operational Rotor Flows

The early nonlifting rotor computations could be easily handled by simple grids

designed to resolve flow features in the imediate vicinity of the blade surface

(fig. 6). At present, all available codes still use such blade-localized grids.

Nevertheless, any lifting rotor flow is dominated by a wake system which cannot be

contained in such a grid. Figure 7 illustrates the problem for a simple hover

flow--the first flow for which this problem was rigorously treated. As indicated in

figure 7, several vortices from the wake system may pass through the finite differ-

ence grid, but the wake system outside of the grid is significant and must be

accounted for. This problem was treated by finding (and including in the boundary

conditions) the blade-surface normal velocity induced by this outer wake and then

solving the local rotor flow in a manner which includes near-blade vortices. These

near vortices have been included in several ways. In reference 17, these vortices

were treated by imposing branch cuts, the edges of which were at the required vortex

locations. A more general approach (ref. 15) is to reformulate the problem so as to

find a blade-induced perturbation about a known vortex-induced velocity distribu-

tion. These approaches have been validated by comparison with the hover data of

reference 18, which is presently the only supercritical rotor surface-pressure data

for which simultaneous wake data are also available. The imposition of this

measured wake in these codes has resulted in the excellent comparisons shown in

figure 8. Subsequent to these comparisons, excellent comparisons (ref. 16) with

these hover data have been obtained solely by the use of an inflow boundary

condition. This approach is especially useful in a forward flight computation where

the use of a near-field vortex model becomes quite tedious due to the time- and
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space-varying vortex geometry relative to the blade. This approach was initially
employed in the first true self-trimming, finite-difference rotor computation of
Tung, Caradonnaand Johnson (ref. 19). This computation was performed by combining
the small disturbance code (ref. 8), FDR, with CAMRAD(ref. 20) a complete rotor
comprehensive code which employs a detailed vortex wake representation. These codes
were coupled by using CAMRADto determine the blade motion and inflow (in the form
of an effective angle of attack) resulting from all of the wake except for the
vortex sheet contained in the FDRgrid (fig. 9). The loads thus obtained by FDR
then determined the vortex filament strengths. This coupling was also marked by an
iterative schemewhich obviated the need to compute the blade dynamics at every
finite-difference time step. The resulting scheme is very efficient and will proba-
bly form the basis of future high-speed rotor computations. The above coupling
procedure has since been applied using several of the NASAand Army codes including
FPRand TFAR2. Figure 10 shows a comparison (ref. 21) of several codes with model

operational loads survey (OLS) pressure data. Comparisons of CAMRAD/FPR computa-

tions with pressure data from an ONERA three bladed rotor are shown in figure 11.

These and many other computations have demonstrated the effectiveness of this

approach. Similar comparisons with full-scale flight test data are due for release

within the year. It is clear that this analysis method should be highly effective

for high-speed-rotor design.

It should be understood that these advancing computations use an approximate

vortex model (that is, the use of a surface inflow induced by the wake vorticity).

This approximation seems to work well for high advance-ratio conditions in which the

wake of previous blades is well removed from the rotor. However, a sizable number

of relatively high advance-ratio cases are known where the rotor wake is close and

strong enough to induce considerable vibratory airloading. This problem has spurred

a number of recent efforts to perform more exact computational treatments of blade

vortex interactions (BVI).

Blade Vortex Interaction

The strong interaction between a segment of a rotor blade and concentrated tip

vortices in the wake is an important source of noise and vibration at low and moder-

ate flight speeds. The limiting case of a vortex intersecting a rotor blade with

its axis parallel to the leading edge of the blade, while fundamentally unsteady, is

relatively simple for theoretical and numerical analysis, and it has been the sub-

ject of several recent investigations. These studies, which were reviewed recently

in more detail by Srinivasan and McCroskey (ref. 22), have established the basic

features of blade-vortex interactions, and they provide a choice among alternative

methods that range from transonic small-disturbance to Navier-Stokes formulations

for calculating such interactions.

Within this hieraehy of equations and solution algorithms, three basic methods

of introducing a concentrated vortex into a computational domain have been employed.

The most straightforward approach is (I) to specify initially the complete velocity

and pressure field produced by the vortex when it is some distance upstream of the
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blade, and then (2) to rely on the properties of the numerical method to maintain
the correct vortex structure, and (3) to compute the subsequent interaction as the
solution advances in time. Unfortunately, most numerical methods include artifi-
cial, numerical dissipation to improve their stability and convergence properties.
As a result, the steep gradients within the vortex are diffused more rapidly by the
numerics than by physical viscosity, unless excessively fine computational grids are
used, and the computedblade-vortex interaction is seriously weakenedand in error.
Only within the past few months has a numerical schemeemerged that overcomes this
difficulty, that of Rai (ref. 23), which is described later.

Consequently, two alternate methods were developed in previous years, in which
the vortex is modeled to someextent. (I) The first of these was the branch-cut
method {ref. 17), which can be used for potential flows. In addition to the usual
branch cut that extends downstreamof the trailing edge of the airfoil, a second
branch cut is introduced between the vortex and an outer boundary of the flow field,
and a jump in velocity potential equal to the strength of the vortex is prescribed
across this second branch cut. The flow remains irrotational outside the airfoil
and vortex branch cuts, and the governing equation and boundary conditions remain
unchanged. However, if the vortex moves through the flow field, the logic of the
numerical code must allow its branch cut to moveaccordingly. The numerical calcu-
lations seemto be sensitive to this motion, especially for strong interactions.

(2) The second approach is the prescribed-disturbance method, sometimes called
the dual or split-potential method, although it is not restricted to potential
flow. In this approach, the velocity field is split into a prescribed part, which
represents the "free stream" plus an isolated vortex moving through the flow field,
and the remainder that is to be determined and which results from the interaction of
the vortex and the airfoil or blade. The resulting finite-difference equations are
slightly more complicated, and the entire vortex field must be computed at every
grid point and at every time step, thereby increasing the CPUtime slightly. How-
ever, the method is stable and accurate, and an arbitrary vortex-core structure can
be prescribed. The principal limitation of both modeling methods is that they
ignore any changes in the structure of the vortex caused by the encounter with the
blade. Rai's method (ref. 23) has no such restriction, and, as will be shown later,
he has been able to compute a head-on collision between a vortex and an airfoil.

Representative two-dimensional results from References 22 and 25 are shown in
figures 12 and 13 for a symmetrical airfoil section at transonic speeds. Figure 12
shows the distortions in the chordwise pressure distributions on the airfoil as the
vortex passes underneath, computed by a thin-layer Navier-Stokes code with a
solution-adaptive grid, which greatly improves the resolution by placing the most
grid points in the regions of highest gradients. The changes in the grid with time
are shown in the middle of the figure, and the Machcontours at the bottom help to
delineate the flow-field details. These results illustrate that strong gradients in
pressure occur with respect to both time and space, because of the vortex encounter.
These gradients can be especially significant in the leading-edge region of a thin
airfoil.
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Figure 13 compares the fluctuating lift on the airfoil computed by transonic
small-disturbance (ref. 22) (George, A. R. and Lyrintzis, A., private communication,
Moffett Field, CA), full-potential (ref. 25), Euler (Sankar, N. L., Tang, W., and
Hsu, T., private communication, Moffett Field, CA) and thin-layer Navier-Stokes
codes (ref. 24) at Amesand elsewhere (refs. 22, 25, 26). This is a case with
strong nonlinear and unsteady effects, but not severe enough to include
boundary-layer separation. The various results are approximately the same for lift,
although the instantaneous pressure, distributions and shock-wave positions differ
more (ref. 22).

The aforementioned head-on encounter, computedby Rai (ref. 23) with a Navier-
Stokes code, is shown in figure 14. The vorticity contours indicate the vortex
itself and the viscous boundary layer next to the airfoil, and the splitting of the
vortex above and below the airfoil is clearly evident. Although there is no shock
wave in this subsonic case, this kind of head-on interaction can currently be
treated only by this code. The main disadvantage of this code is that it takes
about two or three times as muchCPUtime than the prescribed-disturbance Navier-
Stokes code on a comparable grid, and at least 50 times more than the transonic
small-disturbance code.

The computational efficiency of the small-disturbance codes meansthat many
more calculations can be performed on a given computational grid, or that much finer
grids can be used without excessive CPUcosts. This, in turn, has led to their use
in exploring the radiating pressure field several chord-lengths away from the air-
foil, i.e., BVI noise. Baeder et eL1. (ref. 26) combined CFDand aeroacoustics
concepts in studying this problem, producing the results shown in figure 15. These
disturbance-pressure contours exhibit a fidelity unmatched in other investigations.
Their results indicate a dramatic sensitivity of the radiated sound to Machnumber,
but a surprising insensitivity to airfoil shape. Continuing research on this sub-
ject is employing other codes and computational grids.

The step from two dimensions to three is enormous, but it must be made for
practical rotorcraft problems. The first efforts were by Strawn and Tung (ref. 27),
who used a full-potential code to examine special experimental cases run at the
Aeroflightdynamics Directorate (ref. 28). Figure 16 shows the rotor-vortex experi-
ment, and figure 17 is a comparison of computed and measured pressure distributions
for a difficult, highly-transonic case. Although the agreement is not perfect, the
essence of the phenomenonis clearly captured by the numerical results. Extensions
to the pressure field off the blade are under way.

Viscous Transonic Airfoil Characteristics

The NASA-Ames code ARC2D (ref. 29) has been used in reference 30 to calculate

the transonic viscous flow of helicopter profiles, based on the thin-layer

Reynolds-averaged Navier Stokes equations, with an algebraic eddy-viscosity model to

approximate boundary-layer turbulence. Figure 18 shows representive results for

combinations of Mach numbers and angles of attack that produce significant nonlinear

behavior and shock-wave/boundary-layer interaction. The numerical results reproduce
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the experimentally observed airfoil behavior across the transonic regime. Also, the
details of the computedflow fields provide new insights into transonic airfoil
behavior under conditions for which accurate measurementsare difficult to obtain
and are often tainted by wall-interference effects.

Figure 18 shows the lift behavior at low angles of attack, including the loss
of lift that occurs whensignificant separation is induced by the shock wave in the
Machnumber range, 0.83 < M < 0.93 for the NACA0012 airfoil. The drag rise in the
transonic regime is also shown. The abrupt change in pitching-moment behavior,
knownas "Mach tuck," is illustrated in figure 19. In all cases, the numerical
results seemto be as reliable as wind tunnel data. However, the accurate predic-
tion of maximum CL remains a formidable challenge.

Tip Vortex Formation

The importance of blade-vortex interactions for rotorcraft has led to many ad

hoc attempts to alter the structure of the tip vortices. With the recent advent of

several three-dimensional Navier-Stokes pilot codes, computational fluid dynamics

offers a new tool for this problem. Preliminary results seem very promising.

Srinivasan et al. (ref. 31) recently examined four planforms of nonrotating

wings and computed the details of their tip vortex formation. Fair agreement was

obtained with the limited available experimental data, e.g., figure 20, although

questions remain concerning the grid resolution and the validity of the turbulence

model used.

Figure 21 shows the pressure distributions computed on a swept rotor-blade tip

in a nonrotating environment. The beneficial effects of leading-edge sweep were

demonstrated by comparisons with the same blade with a straight leading edge and the

same taper distribution; this blade had a much stronger shock wave and considerable

boundary-layer separation. However, it was found that the tip vortex on the swept-

tip blade was much more concentrated and had higher peak velocities that the

straight leading-edge blade. Therefore, there appears to be much room for planform

optimization when both aerodynamic performance and tip-vortex structure are

involved.

Aerodynamics of Complete Rotorcraft Configurations

Computational fluid dynamics is incapable today of treating realistic combina-

tions of rotors and bodies. However, algorithms are constantly improving, the

rotorcraft industry is beginning to use and gain valuable experience with modern CFD

codes, and supercomputer technology is advancing at a dazzling pace. The principal

pacing items are algorithm improvements and adaptations to the peculiar features of

rotorcraft, turbulence modeling, vortex wake modeling, grid generation; memory size

and speed of current supercomputers, user familiarity in the rotorcraft industry,

and management acceptance of the potential of CFD, notwithstanding the substantial

investment required in manpower, software, and hardware.
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In anticipation of future supercomputer capabilities, the Army and NASAhave
already begun laying the foundation for eventual computational analysis of complete
configurations. A first step is creating computational grids on a combination of
rotating blades and a nonrotating body, such as a fuselage or tail fin. Figure 22
shows the most promising grid topology that has emergedso far. Here a zonal, or
block, grid strategy is employed, in which body-conforming grids are embeddedwithin
rotating and nonrotating cylindrical blocks. The cylinders provide the simplest and
most accurate topology for passing computed information across the boundary between
the rotating and nonrotating solid bodies, whereas other block topologies are more
appropriate for computing the flow near the surfaces and in the near wakes.

Finally, the rotorcraft industry stands to benefit enormously from NASA's
investment in computational aerodynamics and supercomputer technology in the
National Aerodynamic Simulation program (NAS). This multimillion-dollar large-scale
computer system, indicated schematically in figure 23, will provide a national
computational capability for NASA,the Department of Defense, industry, other
government agencies, and universities. Several rotorcraft projects have already
been accepted for the NASprogram. The vigorous pursuit of computational aerody-
namics for rotorcraft applications will benefit all segments of our industry.

Concluding Remarks

Over the past fifteen years, the Army and NASA research groups at Ames Research

Center have developed a wholly new approach to rotor flow prediction. This work has

included the development of a number of rotary wing computational fluid dynamics

(CFD) codes, which are now seeing extensive industrial use. With these codes it is

now practical to perform many complete rotor computations which include transonic

unsteady and three-dimensional effects without recourse to empiricisms and extensive

data libraries. These tools permit a new level of high-speed-rotor design

capability.

Although the high-speed-flow methods are now becoming operational, there are a

number of significant flow problems which remain and can best be treated by CFD.

Stall is one of the foremost of these problems. Although this problem has been

neglected of late, it remains the primary limiter to rotor lifting capability. New

Navier-Stokes codes will ultimately permit an understanding of three dimensional

stall effects. Another area which requires much work concerns interactional aerody-

namics, including various blade-vortex, main-rotor/tail-rotor and rotor-fuselage

interactions. A developing understanding and ability to predict these effects will

enable substantial control and design for vibratory loading.

The potential payoff for future rotor CFD developments remains high. As in the

past, however, these developments will require the combination of computational,

experimental, and operational capabilities which are found in the Army and NASA

rotor research organizations.
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DYNAMICS AND AEROELASTICITY SESSION

SUMMARY

Four papers summarizing a broad spectrum of NASA and Army

contributions to rotorcraft dynamics and aeroelastic technology over the last

decade or so were presented in the Dynamics and Aeroelasticity Session. The

first paper, "A Summary of Recent NASA/Army Contributions to Rotorcraft

Vibrations and Structural Dynamics Technology," by R. G. Kvaternik, F. D.

Bartlett, Jr., and J. H. Cline, summarized accomplishments in airframe

finite-element modeling for dynamic analysis, analysis of coupled

rotor-airframe vibrations, optimization of airframes subject to vibration

constraints, active and passive control of vibrations in both the rotating and

fixed systems, and the integration of testing and analysis in such guises as

experimental modal analysis, system identification, structural modification,

and vibratory loads measurement. The second paper, "Rotorcraft Loads Research

- A Review," by W. G. Bousman and W. R. Mantay, summarized the progress which

has been made in the areas of rotor loads prediction, the reduction of loads

through the exploitation of blade structural tailoring, load modification

through blade/control coupling, and aerodynamic tuning devices. Rotor loads

research conducted with small-scale models and flight test were also

described. The third paper, "Comprehensive Rotorcraft Analysis Methods," by

W. B. Stephens and E. E. Austin, summarized advances which have been made in

the development and application of large-scale, multidisciplinary rotorcraft

analysis codes that can treat the entire aircraft in such diverse disciplines

as dynamics and aerodynamics, performance, stability and control, loads,

vibrations, and aeroelastic stability. Six such codes were reviewed with

respect to their processing structures, analysis capabilities, mathematical

models, and executive features. Selected comparisons with test data were

shown. The last paper, "Rotorcraft Aeroelastic Stability" by R. A. Ormiston,

W. G. Warmbrodt, D. H. Hodges, and D. A. Peters, summarized the theoretical

and experimental developments in aeroelastic and aeromechanical stability of

helicopter and tiltrotor aircraft, with emphasis on advanced hingeless and

bearingless rotor configurations. The stability of both isolated rotors and

coupled rotor-fuselage systems were considered. Correlation of theory with

experimental data from small and large-scale wind-tunnel and flight test were

also shown.

69
_ECED:NG PAGE BLANK NOT FI/_ED



N88-16628

A SUMMARY OF RECENT NASA/ARMY CONTRIBUTIONS TO ROTORCRAFT

VIBRATIONS AND STRUCTURAL DYNAMICS TECHNOLOGY

Raymond G. Kvaternik

NASA Langley Research Center

and

Felton D. Bartlett, Jr.

and

John H. Cline

Aerostructures Directorate

U.S. Army Aviation Research and Technology Activity (AVSCOM)

ABSTRACT

The requirement for low vibrations has achieved the status of a

critical design consideration in modern helicopters. There is now a

recognized need to account for vibrations during both the analytical

and experimental phases of design. Research activities in this area

have been both broad and varied and notable advances have been made

in recent years in the critical elements of the technology base

needed to achieve the goal of a "jet smooth" ride. The purpose of

this paper is to present an overview of accomplishments and current

activities of government and government-sponsored research in the

area of rotorcraft vibrations and structural dynamics, focusing on

NASA and Army contributions over the last decade or so. Specific

topics addressed include: airframe finite-element modeling for static

and dynamic analyses, analysis of coupled rotor-airframe vibrations,

optimization of airframes subject to vibration constraints, active

and passive control of vibrations in both the rotating and fixed sys-

tems, and integration of testing and analysis in such guises as modal

analysis, system identification, structural modification, and vibra-

tory loads measurement.

INTRODUCTION

Since the first U.S. helicopter went into production over four

decades ago (fig. I), excessive vibrations have plagued virtually all

new rotorcraft developments. The problem transcends national bound-

aries and is not unique to the U.S. helicopter community. An account

of the vibration problems encountered in the development of an early

Soviet helicopter (fig. 2) is given by Alexander Yakovlev in refer-

ence i. Yakovlev's account was popularized when excerpts from his

book appeared in the magazine Aviation Week (December 28, 1959). The

frustration of trying to solve an elusive vibration problem became so

intense that, as the designer writes, "It got to the point where,

instead of calling greetings when we met in the morning, we shouted

at each other: 'How is it going - still shaking?' 'It's shaking;

it's shaking!' 'When will this damned shaking stop?'" More recent

accounts of the impact of vibrations on Army helicopter developments
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are given in references 2 and 3 in which problems experienced during

initial flight testing of the UH-60 Black Hawk (fig. 3) and AH-64

Apache (fig. 4) are described. The problems encountered on these

helicopters included: higher than expected rotor vibratory loads,

unanticipated rotor-airframe interactions, airframe resonances near

excitation frequencies, excessive empennage vibrations, and ineffec-

tive vibration control devices. As a result, vibration levels on the

prototype aircraft were significantly above Army specifications

throughout the flight envelope.

Helicopters are susceptible to vibrations due to the inherent

cyclic nature of the airloads acting on the rotors. The vibrations

normally pervade both the rotor and the airframe and can seriously

degrade both service life and ride qualities. Vibrations also

frequently limit the maximum speed in forward flight. Considerable

progress has been made over the past 40 years in reducing the level

of vibration in helicopters as indicated in figure 5. While improve-

ments have been significant, it should be noted that the procurement

specifications have consistently been for levels of vibration lower

than could usually be achieved on production helicopters. In the

case of the Army UTTAS (Utility Tactical Transport Aircraft System)

and AAH (Advanced Attack Helicopter) development programs in the

mid-1970s, for example, the specifications originally required vibra-

tion levels not exceeding 0.05g. Because none of the competitors

could meet this specification, it had to be increased to 0.10g. How-

ever, even with this relaxed requirement, the vibration levels in the

UH-60 and AH-64 (the winning designs in the two competitions) were

reduced to 0.10g only after making numerous structural and configura-

tion changes which included raising main rotors, adding aerodynamic

fuselage fairings, modifying hub absorbers, installing airframe

absorbers, changing local stiffnesses, modifying crew seats, and iso-

lating stabilators. (It should be pointed out that the 0.10g levels

achieved are for the delivered aircraft and that structural changes

which occur during normal aircraft operations tend to degrade vibra-

tion characteristics. Levels of 0.20g are more typical of fielded

Army helicopters). The dramatic reduction in the level of vibration

noted in figure 5 has, for the most part, been achieved through the

use of add-on vibration control devices of one type or another.

These devices, while quite effective in reducing vibrations, have

tended to cost an increasing percentage of the design gross weight.
The weight penalty associated with the addition of absorbers to

reduce vibration levels to 0.10g can be as high as 2.5 percent of

design gross weight. For a fixed design gross weight, this repre-

sents a reduction of from i0 to 15 percent in primary mission pay-

load. Isolation systems have also gained popularity in recent years.

These mechanisms, which are designed to uncoupled the rotor dynamic

system from the fuselage, appear to have somewhat reduced weight

penalties with respect to other passive vibration control devices.

Even though excessive vibrations have always been prevalent in

new helicopter developments, until recently, helicopter manufacturers

have not addressed vibrations as part of the regular structural

design process. The UTTAS RFQ in 1971 was the first instance when a

procuring agency specified the level of vibration to be addressed in
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a competitive design. With only a few exceptions, helicopters have

been designed to performance requirements while relying on past expe-

rience to account for vibrations. Excessive vibrations (which

invariably occur) are "tinkered out" during ground and flight test-

ing. The vibration levels to be regarded as acceptable are usually

negotiated during this tinkering process (recall the UTTAS and AAH

experience). Oftentimes modifications to reduce vibrations to

acceptable levels continue well into the operational phase of a heli-

copter.

The cost required to solve vibration problems during the devel-

opment cycle is qualitatively illustrated in figure 6 which shows the

trend of engineering manpower requirements dedicated to vibration

reduction. During the design phase, effort increases gradually until

first flight. At this point an abrupt increase occurs (the beginning

of the so-called "crisis period") that extends well into the develop-

ment cycle. This increase significantly raises development costs and

leads to slipped delivery schedules. Operational costs are also

increased both due to the attendant weight penalties associated with

vibration treatments and due to the increased maintainability

requirements for vibration control devices. Clearly, the payoff from

minimizing crisis engineering and eliminating overruns is signifi-

cant. As previously mentioned, helicopter companies have relied

little on analysis during design to limit vibrations. However,

because of the vibration problems encountered in the UTTAS and AAH

development programs, there has emerged a consensus within the indus-

try on the need to account for vibrations more rigorously during both

the analytical and experimental phases of design. This need has

resulted in the subject of helicopter vibrations receiving consider-

ably increased attention in recent years (see, for example, refs. 4

to 9). The goal (unofficially) set down by the industry is to

achieve the vibration levels associated with fixed-wing aircraft, the

so-called "jet smooth" ride. To achieve this goal will require the

development of advanced vibration design methodologies (ref. i0).

Vibration design can be broadly classified into three interde-

pendent activities: (i) passive design to select rotor and airframe

parameters which yield low inherent vibrations; (2) design of vibra-
tion control devices to minimize rotating and fixed-system vibratory

loads; and (3) vibration testing to verify design concepts and to

compensate for any deficiencies in analytical capabilities. The

interactive nature of these activities is depicted in figure 7 which

shows one representation of the helicopter vibration design cycle.

The diagram indicates that the problem involves analytical and exper-

imental considerations of the rotor, the airframe, and the coupling

between the rotor and the airframe. The primary sources of high

vibrations are cyclic loads transmitted to the airframe by the main

and tail rotors as well as aerodynamic excitation of the tail boom

and empennage by the main rotor wake. For the most part, passive

vibration design combines past experience with rudimentary analysis.

Special and general-purpose aeroelastic analyses are used to design

for minimum blade vibratory loads. Large-scale finite-element models

are used to verify adequate placement of airframe natural frequencies

with respect to operating frequencies. Comprehensive rotor-airframe
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coupling analyses which account for flexible hub structural dynamics

and interactional aerodynamics have only become available recently

and have not yet been validated. Correlation with test and compara-

tive studies of these state-of-the-art helicopter rotor and airframe

vibration analyses have confirmed what the Black Hawk and Apache

experiences have demonstrated, namely, the inadequacies of existing

passive vibration design methods.

Underlying all considerations related to vibrations and serving

as a unifying element is structural dynamics. Every consideration of

a helicopter system includes dynamic phenomena in some form (fig. 8),

and the importance of structural dynamics is well recognized

(ref. ii). The key role played by structural dynamics in the broader

context of aerospace vehicle design as well as an assessment of

structural dynamics needs are given in references 12 and 13. How-

ever, while structural dynamics clearly plays a principal role in

determining the vibration characteristics of modern rotorcraft, it is

not regarded as a sufficiently mature discipline by the helicopter

industry on which to base vibration design decisions. (It is inter-

esting to note that such is not the case for stability, with analyti-

cal predictions often influencing design decisions). Good structural

dynamic characteristics are essential for the success of any rotor-

craft. The modern helicopter is more susceptible to high vibrations

because of increased operational demands for high-speed and nap-of-

the-earth flight, high maneuverability and agility, improved crew

effectiveness, advanced weapons delivery, increased structural integ-

rity, high reliability, and low maintenance. As a result, vibrations

has achieved the status of a critical design consideration in modern

helicopters. The challenge is now, more than ever, passed on to the

dynamicist. Indeed, it may well emerge that the success or failure

of future rotorcraft developments will rest on the dynamicist.

Research activities in the U.S. in the area of rotorcraft vibra-

tions and structural dynamics have been both broad and varied. Nota-

ble advances have been made in recent years in the critical elements

of the technology base needed to achieve the goal of a "jet smooth"

ride. The purpose of this paper is to present a management overview

in the style of an executive summary of accomplishments and current

activities of government and government-sponsored research in the

area of rotorcraft vibrations and structural dynamics. The overview

focuses on NASA and Army contributions over the last decade or so.

Both in-house and contracted research and development efforts per-

taining to design analyses for vibrations, vibration control, and

vibration testing are described. Emphasis throughout is placed on

the airframe. Rotorcraft aeroelastic stability, rotor blade vibra-

tory airloads, rotor dynamics, and associated wind-tunnel testing are

not addressed except if needed to provide for continuity. This sepa-

ration between the rotor and the airframe is primarily a separation

between aerodynamics and structural dynamics. In practice, this sep-

aration is not possible because of the interaction between the rotor

and the airframe in producing vibrations. Specific topics addressed

include: airframe finite-element modeling for static and dynamic ana-

lyses, analysis of coupled rotor-airframe vibrations, optimization of

airframes subj_ect to vibration constraints, active and passive con-
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trol of vibrations in both the fixed and rotating systems, and inte-

gration of testing and analysis in such guises as modal analysis,

system identification, structural modification, and vibratory loads

measurement. NASA and Army funded efforts with the university commu-

nity are also included. The information used as a basis for the

overview was obtained by reviewing the material identified in a com-

puterized literature search and from the extensive personal libraries

of the authors. Of the hundreds of potentially relevant reports and

papers reviewed those that were judged to be significant for the pur-

poses of the paper are cited as references.

PREPARATORY REMARKS

With a view toward providing a better perspective of NASA and

Army vibrations research, some material of a background nature is

given in this section.

Current NASA rotorcraft research has evolved from the autogyro

research begun by NACA in the 1930's. Valuable contributions to

rotorcraft development have resulted from NACA/NASA research since

that time. While there has always been a close association between

NACA/NASA and the military rotorcraft research and development

agencies, particularly with the Army, the relationship with the Army

was strengthened in 1965 when the Army Aeronautical Research Lab was

established at the Ames Research Center. In 1970 the Army estab-

lished research labs at the Langley Research Center and the Lewis

Research Center and formed what is currently called the Aviation

Research and Technology Activity (ARTA) of the U.S. Army Aviation

Systems Command (AVSCOM). These labs represented an important

adjunct to the NASA organization and sparked a resurgence in NASA

rotorcraft research activities aimed at strengthening and exploiting

the joint research which was made possible by the collocated Army
labs.

The first major NASA program addressing vibrations was the Civil

Helicopter Technology Program (refs. 14 and 15). Although the pri-

mary goal of this program was ride quality research aimed at civil

acceptance of helicopters for transports, vibrations was of interest

because it was a major factor contributing to public acceptance of

helicopters. In March 1978, NASA's Office of Aeronautics and Space

Technology formed a special Rotorcraft Task Force to review rotor-

craft technology needs and to prepare an appropriate rotorcraft

research program aimed at advancing technology readiness. The Task

Force solicited inputs from the rotorcraft industry, NASA research

centers, and other government agencies. The National Research Coun-

cil (NRC) and the Rotorcraft Subcommittee of the NASA Aeronautics

Advisory Committee conducted independent reviews of the proposed NASA

program. As a result of counsel received from all quarters, a plan

was finalized and published in October 1978 (ref. 16). The review

conducted by the NRC was published under separate cover (ref. 17).

The Task Force proposed a 10-year, $398 million (FY 78 dollars) pro-

gram with four major elements: aerodynamics and structures, flight

control and avionic systems, propulsion, and vehicle configurations.
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Each of the four major elements was divided into two or more specific

areas of emphasis. Vibrations was cited as one of three key areas

under aerodynamics and structures. As enunciated in the Task Force

Report, the focus was to be on providing the technology and design
methodology for accurate prediction and substantial reduction of air-

frame vibrations. The Task Force Report was the catalyst for the

NASA Langley Research Center to begin formulating a rotorcraft struc-

tural dynamics program to meet the needs of the helicopter industry

with respect to airframe vibrations. The overall objective of the

proposed program, which was defined in close cooperation with the

industry and coordinated with the Army, was to establish in the U.S.

a superior capability to utilize airframe finite-element analysis to
support the design of helicopter airframe structures. Viewed as a

whole, the program includes efforts by NASA, universities, and the

helicopter industry. In the initial phase of the program, teams from

the major manufacturers of helicopter airframes would formulate

finite-element models of selected airframes of both metal and compos-
ite construction and carry out ground vibration tests and correla-

tions to evaluate the analysis models. To maintain the necessary

scientific observation and control, emphasis throughout these activi-

ties would be on advance planning, documentation of methods and

procedures, and thorough discussion of results and experiences, all

with industry-wide critique to allow maximum technology transfer

between companies. The finite-element models formed in this phase

would then serve as the basis for the development, application, and

evaluation of both improved modeling techniques and advanced analyti-

cal and computational techniques to enhance the technology base which

supports design of helicopter airframe structures. Here again,

procedures for mutual critique have been established which call for a

thorough discussion among the program participants of each method

prior to the applications and of the results and experiences after

the applications. Because of the emphasis on design methodology, the

aforementioned rotorcraft structural dynamics program was given the

acronym DAMVIBS (Design Analysis Methods for VIBrationS).

In 1979, primarily because of the problems experienced during
the UTTAS and AAH development programs, the Director of what is now

the U.S. Army Aviation Research and Technology Activity requested

that an assessment of helicopter vibration research be made. Infor-

mation for this assessment was obtained by surveying the helicopter

industry, Army research labs, and appropriate NASA research centers.

This review addressed the status of past, present, and planned

research efforts within the Army as well as joint Army/NASA programs.

The results of this assessment were published in 1982 (ref. 18). The

five major disciplines which were critically reviewed included: rotor

vibratory loads, airframe structural dynamics, rotor-airframe cou-

pling, vibration control devices, and vibration testing. As a result

of this comprehensive review, and with a consensus of the rotorcraft

community, significant technology voids were identified and areas for

future research were recommended. The technology deficiencies can be

summarized into two areas of concern relative to helicopter vibra-

tions. First, the inability of present design methods to accurately

predict rotor vibratory loads and coupled rotor-airframe vibrations.

Hence, the need to resort to add-on vibration control devices. Sec-
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ond, a lack of definitive procedures which make maximum use of vibra-

tion test data, instead of trial-and-error testing, to resolve vibra-

tion problems. To address these technical concerns, Army vibration

research in recent years has been directed to rotor-airframe coupling

analysis, advanced active and passive vibration control demonstra-

tion, and improved vibration testing methodology development.

The Army program (ref. 18) was reaffirmed and the proposed NASA

DAMVIBS program was formally presented to the helicopter industry at

a finite-element modeling workshop focusing on rotorcraft structures

which was held at Langley Research Center in February 1983 (refs. 19

and 20). Because of the complementary nature of the two programs,

industry consensus was to proceed with both programs. Army funding

for the contracted activities envisioned under their program did not

materialize so only the in-house work was initiated. NASA funding

for the DAMVIBS program was approved and the program was implemented

in April 1984 with the awarding of task-type contracts to each of the

four primary helicopter airframe manufacturers (Bell Helicopter

Textron, Boeing Vertol, McDonnell Douglas Helicopter Company (at that

time Hughes Helicopters, Inc.), and Sikorsky Aircraft). Work com-

pleted to date under the NASA and Army programs as well as the status

of current activities and near-term plans are also discussed in

appropriate sections of the paper.

DESIGN ANALYSIS FOR VIBRATIONS

As discussed in the Introduction, designing a helicopter for low

vibrations may be viewed as consisting of essentially three interde-

pendent activities: (i) design technology, wherein the use of analy-

sis during design (i.e., design analysis) is employed to establish

dynamically passive or vibration-benign rotors and airframes; (2)

control technology, whereby vibration control devices are designed to

further reduce rotating and fixed-system vibratory loads; and (3)

test technology, wherein vibration testing is used to verify design

concepts and to compensate for any deficiencies in analytical capa-
bilities. This section is concerned with the first of these activi-

ties, namely, the use of vibration analysis to support design of air-

frame structures. Three specific areas are discussed: (i) airframe

finite-element modeling; (2) analysis of coupled rotor-airframe

vibrations; and (3) airframe structural optimization.

Airframe Finite Element Modeling

Structural analysis methods employed in the aerospace industry

today are based mostly on the finite-element method. The finite-

element method is a numerical matrix technique for obtaining approxi-

mate solutions to a wide variety of engineering problems. Although

originally developed about 25 years ago to analyze complex aircraft

structures, it has since been extended and applied to a wide variety

of problems spanning many fields of engineering. In particular, the

finite-element method has assumed a premier role in the design and

analysis of aerospace structures both in this country and abroad.
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The idea of the finite-element method is to provide a library of

structural elements (rods, beams, shear panels, plates, etc.) which

can be connected together so as to model any structure of interest.

A computer then automatically carries out the computations necessary

to determine specified categories of behavior of the structure under

specified loads. Finite-element analysis is the standard method for

airframe structural analysis in the U.S. and is now routinely used as

a design tool to calculate static internal loads on each airframe

element to permit sizing and stress analysis. Within the U.S. heli-

copter industry, finite-element analysis as embodied in the NASTRAN

computer code is used exclusively. NASTRAN (ref. 21) is the very

widely emplaced, general-purpose computer code for finite-element

analysis of structures originally developed under NASA sponsorship in

the late 1960s. (Several commercial versions of the code have become

available since that time, with the version developed by the MacNeal-

Schwendler Corporation (ref. 22) being the most widely used). The

remarkable collection of terms and symbols referring to various enti-

ties of the code has become a highly effective universal vocabulary.

The increased accuracy of finite-element-analysis based methods (such

as NASTRAN) over earlier strength-of-materials based methods of ana-

lysis for prediction of internal load distributions has contributed

significantly to the ability to design more efficient (lighter

weight) aircraft structures.

The major fixed-wing aircraft manufacturers developed their own

special-purpose finite-element codes soon after the emergence of the
finite-element method in the late 1950's and well in advance of the

introduction of NASTRAN in 1970. Hence, the use of NASTRAN in this

industry, while extensive, has been generally no more than supplemen-

tal to their own well-established codes in airframe design work. The

U.S. helicopter industry, on the other hand, lagged the fixed-wing

industry in the development of their own finite-element analysis

codes for design so when NASTRAN became available in 1970 it was

promptly adopted by the helicopter industry. NASTRAN is now used

exclusively in this industry to support both static and dynamic

design.

Some early accounts of the use of NASTRAN in the helicopter

industry are contained in references 23-26. The integration of

NASTRAN into the airframe design process at Bell Helicopter is

described in reference 23. The reference outlines pre-processing

procedures for automatic generation of the airframe finite-element

model and distribution of non-structural weight to the three-

dimensional model and a post-processing procedure for reformatting

the output so that it is more directly useful to the stress analyst.

Initial experiences at Bell with the use of the various options in

NASTRAN for static and dynamic analysis are described in reference

24. A brief historical perspective of the adoption and subsequent

application of NASTRAN for analysis of helicopter airframes at

Sikorsky Aircraft are given in reference 25. With respect to the

ability of a finite-element analysis to design a lighter weight air-

craft, Sikorsky credits the use of NASTRAN during the design of the

UH-60 Black Hawk with reducing the structural weight by about ten

percent. Some additional industry accounts of the early use of
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NASTRAN in design may be found in reference 26. As NASTRAN became

more firmly established in the helicopter industry, analytical and

experimental investigations based on the use of finite-element models

began to become more common. Some of the more noteworthy of these

finite-element modeling applications are summarized in the remainder

of this section.

Combined experimental/analytical investigations conducted on

Army OH-58A and OH-6A helicopters are reported in references 27 and

28, respectively. Those studies were some of the earliest aimed at

determining engine response to airframe vibrations. The objective

was to provide the data needed to establish a set of improved engine

vibration specifications for engine manufacturers. The finite-

element models developed as part of those studies are shown in fig-

ures 9 and i0, respectively. In each case, the finite-element model

of the airframe was coupled to a model of the engine based on mobil-

ity data supplied by the engine manufacturer. Analytical predictions

were reported to have agreed reasonably well with test data in both

studies.

Some early modeling and correlation work conducted by Sikorsky

on the CH-53A is reported in references 29 to 31. The initial

finite-element model, described in reference 29, was based on an in-

house code originally developed for civil engineering structures. The

model was rather simple, with the forward and aft portions of the

fuselage modeled as beams cantilevered from a detailed three-

dimensional model of the center fuselage section. A companion sim-

plified NASTRAN model (ref. 30) was later used to develop a complete,

three-dimensional finite-element model of the CH-53A used in the NASA

Civil Helicopter Program (fig. Ii). This program (refs. 14 and 15),

which was directed at evaluating helicopters for short-haul transpor-

tation, utilized a CH-53A modified to incorporate an airline passen-

ger compartment. The modified CH-53A underwent an extensive shake

test program and a detailed comparison was made between test results

and NASTRAN results (ref. 31). Good agreement was noted for the fun-

damental airframe bending and transmission pitch frequencies, but

poor agreement resulted for the lateral/torsion modes and the higher

frequency transmission modes. The predominant vibratory loads imposed

on an airframe by the rotor occur at the blade passage frequency

which equals N times the rotational frequency, where N is the number

of blades. It is customary to refer to this frequency as N-per-rev

or N/rev. For the six-bladed CH-53A this frequency is 18.5 Hertz.

Since the higher frequency transmission modes control the 6/rev

vibratory response in the CH-53A airframe, the analysis was judged to

be an unreliable design tool for predicting even the primary vibra-

tion levels. It was thus concluded that further development of

finite-element modeling techniques was required before such analyses

could reliably predict N/rev response at critical stations on an air-

frame.

The role of NASTRAN in the design of the Rotor Systems Research

Aircraft (RSRA) is discussed briefly in reference 32. The RSRA

(fig. 12) was intended to serve as a flying test bed for a variety of

advanced rotors for helicopters. The requirement to mount different
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rotors posed several unique vibration design problems for the air-

frame. NASTRAN was used extensively to provide the structural dynam-

ics representations for the usual analytical checks on vibrations.

An upgraded version of the original finite-element model of the RSRA

in a compound configuration is shown in figure 12.

In 1973 the Army initiated a program to evaluate NASTRAN as a

tool for vibration analysis of helicopter airframes. The first part

of the program was to develop a NASTRAN model of the AH-IG helicopter

that would represent the low-frequency (below 30 Hertz) vibration
characteristics of the airframe. The documentation of the model was

required to be clear and complete so that government personnel could

independently make changes to the model and use it for in-house ana-

lyses. Following development of the NASTRAN model, the validity of

the model was assessed by comparing the model with static and dynamic
tests. References 33 to 37 describe the results obtained under this

program. The NASTRAN finite-element model, which was developed under

the technical direction of a NASA/Army team, is shown in figure 13

and described in detail in reference 33. Figure 14 illustrates the

type of documentation which was provided for the stiffness modeling

under the contract. The figure shows a drawing of the actual struc-

ture (with skins removed) of the fuselage portion of the airframe.

An exploded view of the finite-element model corresponding to the aft

(shaded) part of the fuselage is depicted in the middle of the fig-

ure. This sketch is the familiar "wire-frame" diagram that is custo-

marily shown when graphically illustrating a finite-element model.

The sketch at the bottom of the figure is an exploded view of one of

the bulkheads in the model and shows the individual rods and shear

panels which represent that particular bulkhead. Detailed sketches

of this type appear for every bulkhead, frame, panel, etc. in the

airframe. Each sketch is also accompanied by a set of tables which

describes the structural elements, constraints which need to be

imposed on the model, and an explanation of the basis for omitting

degrees of freedom not employed for the dynamic analysis. Reference

34 contains the results of static and dynamic tests and comparisons

of results from those tests with results from NASTRAN analysis. Some

frequency response comparisons which are typical of those obtained

from the ground vibration test are given in figure 15. In general,

measured frequency response characteristics were found to be in fair

to good agreement with NASTRAN predictions only through about 15-20

Hertz (This corresponds to about 4/rev for the two-bladed AH-IG). A

report (ref.38) recently generated under the DAMVIBS program in sup-

port of an industry-wide coupled rotor-airframe vibrations activity

(to be described in the next section) summarizes all the modeling and

testing which has been conducted on the AH-IG, including some recent

testing conducted by Kaman Aerospace Corporation. As a consequence

of these well-documented activities on the AH-IG, the AH-IG is prob-

ably the best known airframe of any aircraft described in the open

literature. This has resulted in the AH-IG finite-element model

being used extensively throughout government, industry, and academia.

The vibrations portion of the rotorcraft research program plan

laid out in 1978 by the Rotorcraft Task Force (ref. 16) contained an

airframe modeling/test assessment activity. This proposed task area
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was to involve participation by NASA and industry in a workshop envi-
ronment to assess and document industry design procedures, difficul-
ties with software, modeling techniques, and shake test procedures.
All work was to be conducted on a production aircraft. NASA funding
for that activity was approved and, as a result of a competitive pro-
curement, a contract was awarded Boeing Vertol in 1980. The subject
vehicle was to be the CH-47D. An unusual requirement of the contract

was that each major step of the program be presented to and critiqued

by the other three primary helicopter airframe manufacturers. Also

unique was the requirement that plans for the modeling, testing and

correlation be formulated and submitted to both NASA and industry

representatives for review prior to undertaking the actual modeling

and testing. Boeing was also required to make a study of current and

future uses of finite-element models and to keep meticulous records

on the manhours required to form the vibrations model. The latter

"time and motion" study was intended to provide a basis on which to

schedule finite-element modeling for any new helicopter development

program. The contract also called for thorough documentation of the

model, but not to the level of detail which had been required for the
AH-IG. References 39-43 constitute the formal documentation of all

work done under the contract. A concise summary of the program may

be found in reference 44. The finite-element model developed under

the program is shown in figure 16. An example of the type of model-

ing guides required as part of the modeling plan is given in figure

17, which shows static and mass modeling guides for a typical frame

in the CH-47D. Figure 18 illustrates the types of comparisons which

were obtained between measured and computed frequency responses. In

general, the agreement between test and analysis was acceptable only

through about 15-20 Hertz (3/rev for the 3-bladed CH-47D corresponds

to 11.25 Hz). The modeling activity demonstrated that a finite-

element model suitable for internal loads, structural member sizing,

and vibrations can be developed, and that there is no need to form

separate static and dynamic models as has usually been the practice.

The study further showed that the cost of such a combined static and

dynamic model is about five percent of the manhours of a typical air-

frame design effort. Of the five percent, four percent is already

typically expended in most companies to form the internal loads

model; the vibrations model is another one percent. The "time and

motion " study showed that a vibrations model could be formed early

enough in a new helicopter development program to influence the air-

frame design. A number of items were identified during the modeling

and correlation effort which have the potential for improving the

correlation. These include: consideration of nonuniformly distrib-

uted modal damping, the inclusion of secondary effects such as

stringer shear area, assumptions on stringer continuity across splice

joints, and the inclusion of suspension system effects. An example

of the type of improvement which could be achieved by better treat-

ment of damping is indicated in figure 19. Usual practice is to use

the same (assumed) value of damping for each mode in forced response

analyses. The figure shows the results of a preliminary exercise in

which modal damping has been adjusted in some of the more important

modes in an effort to improve correlation with test results. In the

case shown the damping has been varied to obtain the best match away

from the response peaks.
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As a consequence of the CH-47D modeling and correlation activi-

ties, it became clear that the key to engendering in the industry the

needed confidence to use finite-element models for vibration design

was more industry hands-on experience along the lines of the CH-47D

program. Also identified as being essential was a workshop environ-

ment which fostered the discussion of modeling details and the inter-

change of ideas. Prior to the CH-47D program, finite-element model-

ing work conducted by the industry was fragmented for the most part

with each company going its own way and (sometimes) preparing a

report (which wasn't always available to competitors). The transfer

of technology related to modeling was minimal at best. The NASA

rotorcraft structural dynamics program, known as DAMVIBS, was defined

with a view toward providing the necessary focus and environment of

shared experiences for the common good of all. As previously men-

tioned, the DAMVIBS program was implemented in April 1984 with the

award of contracts to the four primary helicopter airframe manufac-

turers. The industry participants, working under task-type con-

tracts, have already been issued several tasks for the modeling and

testing of both metal and composite airframes. Three NASA/industry

meetings have already been held under the DAMVIBS program (September

24-25, 1984; October 1-3, 1985; December 2-4, 1986) at which industry

participants have either presented their plans for conducting an

activity or the results and experiences of a completed activity.

Draft final reports for the completed tasks have been submitted and

are in various stages of NASA review. Finite-element modeling and

correlation activities have been completed on the McDonnell Douglas

AH-64A (fig. 20). Modeling of the Sikorsky UH-60A and Bell D-292

(ACAP) are complete and correlations are under way (figs. 21 and 22).

The ground vibration test of the Boeing Model 360 (fig. 23) has been

completed; modeling is nearing completion at which time correlation

studies will begin. The results of the unfinished studies will be

presented at the next DAMVIBS meeting (tentatively scheduled for late

1987). From the modeling and correlation results obtained to date

under the DAMVIBS program, metal airframes continue to exhibit

acceptable agreement through only about 15-20 Hertz. Preliminary

results also show that the dynamics of composite airframes are essen-

tially the same as metal airframes. While correlations are not yet

completed, preliminary results indicate that agreement between test

and analysis for composite airframes is similar to that obtained for

metal airframes (still a problem above about 15-20 Hz). Preliminary

results also indicate that damping levels in composite airframes are

about the same as in metal airframes (2-4 percent critical).

The CH-47D modeling activities and attendant industry critique

demonstrated that all companies are using essentially the same tech-

niques to model metal aircraft. The DAMVIBS program has demonstrated

that the same is true for composite airframes. In the basic modeling

studies being conducted under the DAMVIBS program only the primary

(major load carrying) structure is represented fully (stiffness and

mass) when forming the finite-element model. This is consistent with

usual modeling practice. There are many components (e.g., transmis-

sions, engines, and stores) and secondary structure (e.g., fairings,

doors, and access panels) which are represented in the model only as
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lumped masses. This may be a major contributing factor to the dis-
agreement noted between analysis and test at the higher frequencies.
In an attempt to answer this question, a DAMVIBS activity called
"Finite-Element Modeling of Difficult Components" has been recently

initiated. The aim of the "difficult components" activity is to iso-

late the effects of modeling assumptions and to develop improved

modeling guides for components which require more detailed modeling

representation. The first study is being conducted by Bell utilizing

an AH-IG helicopter. The airframe will be stripped down to primary

structure and sequentially built back up to its full configuration,

as suggested by figure 24. At each stage, a ground vibration test

and an analysis based on a suitably modified finite-element model

will be performed and the results compared. The end results will be

the identification of modeling procedures which need to be improved.

Current plans are to conduct a similar type activity on a composite

airframe.

Effects of support systems and excitation systems on airframe

elastic responses measured in a ground vibration test are typically

assumed to be negligible. However, if there are differences between

test and analysis, the question of possible extraneous effects asso-

ciated with these systems often arises. It is clear that correla-

tions would be interpreted with more confidence if these effects were

included in the analysis. NASA has devised a scheme for including

the effects of support systems and excitation systems in the finite-

element dynamic analysis while taking into account the prestiffening

effects due to gravity. Boeing Vertol applied this method to the

CH-47D. While only minor effects were noted for the CH-47D (refs. 42

and 43) the effects may not be negligible for other configurations.

The method appears promising but additional investigation is needed

before the method can be routinely applied. The work of fully devel-

oping and verifying the method is continuing at Langley using the

finite-element model of the CH-47D airframe. In connection with this

latter effort, several areas in which the finite-element model could

be improved have recently been identified. These latter refinements

are to be done by a joint NASA/Boeing team.

Steady-state vibration response analyses are currently being

used in evaluating the dynamic response of structures to cyclic exci-

tation forces. An undocumented vibration response analysis based on

modal superposition was developed at Langley about 13 years ago in

support of RSRA dynamic studies. (This program was used to do the

forced response analyses for the CH-47D contained in references 42

and 43). Recently, several enhancements were made to the program

making it interactive for rapid evaluation and plotting of responses.

The improved version of this computer program is thoroughly docu-

mented in reference 45.

There are two in-house Army activities of note relating to

finite-element modeling of composite structures. One activity,

recently completed, was aimed at examining the modeling and testing

complexities of composite structures. A prototype composite tail

boom of the type installed on several OH-58A helicopters for environ-

mental evaluation purposes was selected as the test specimen. The
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Engineering Analysis Language (EAL) finite-element computer program
(ref. 46) was used to model the tail boom (fig. 25). Interest was
focused on stud_-_ng the effect of graphite fiber-volume fraction on
static and dynamic behavior because material tests had indicated that
the volume varied by as much as ten percent. Results (refs. 47 and
48) indicated that there was improved agreement with test if measured
values of material properties were used in the analysis. The other
composite modeling activity relates to a blade rather than an air-
frame but it seems appropriate to include it because the blade is
being modeled as a three-dimensional structure. The interest here is
to investigate the potential for improving the dynamic and aerody-
namic performance characteristics of composite rotor blades through
the exploitation of structural coupling associated with ply orienta-
tion. Extension-torsion coupling is currently being studied. A
three-dimensional model of a highly twisted blade such as might be
employed for a tilt rotor is being formed, both to support the design
of a model blade and to support subsequent comparisons with both
static and dynamic tests. A preliminary model of the D-spar of an
untwisted blade as well as of a more recent twisted blade which
includes the trailing edge are shown in figure 26. The model is
being refined and work is under way to include the proper rotational
effects.

Analysis of Coupled Rotor-Airframe Vibrations

There are four technical factors that should be recognized when

dealing with vibrations of a helicopter: (i) vibratory loads induced

by the rotor actions; (2) response of the rotor; (3) coupling of the

rotor and airframe; and (4) response of the airframe. The major

source of vibrations arises from the cyclic loads acting on the rotor

blades due to their interactions with the airstream. The dynamic

characteristics of the rotor and the airframe and the coupling of

these two systems determine the manner in which the helicopter

responds to this excitation. As mentioned in the Introduction, the

purpose of this paper is to present an overview of accomplishments

and contributions associated only with factors (3) and (4) noted

above. The response of airframe structures regarded as separate sys-

tems was addressed in the previous section. In this section atten-

tion is directed to factor (3), namely, the coupling of the rotor and

the airframe to account for their interaction in producing vibra-

tions. The emphasis here, as before, is on the response of the air-

frame as part of a coupled rotor-airframe system.

The analysis methods now employed by industry applicable to

helicopter vibrations generally fall into two categories, namely, (i)

methods for analysis of airframe behavior and (2) methods for analy-

sis of rotor behavior. For nonrotating airframe components, the

NASTRAN computer code, as discussed in the previous section, has

become the standard finite-element analysis tool used throughout the

helicopter industry for structural design. For rotating components,

there has been extensive work on formulating and solving equations of

motion of rotors (see, for example, refs. 49 to 57). These refer-

ences include a number of existing computer simulations of the heli-
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copter in flight. Such simulations, of course, incorporate represen-
tations of both the rotor and the airframe and the connections
between the two and thus theoretically could be applied to calculate
vibrations. However, there is little note in the literature of their
use to calculate airframe vibrations. These simulations have been
applied mainly to evaluate flight controls, to analyze rotor stabil-
ity, and to calculate blade vibratory loads. As a rule, the current
simulations incorporate only cursory, if any, treatment of the air-
frame elasticity, and are cumbersome to use for airframe structural
design work.

It has long been recognized that the interaction or coupling of
the rotor and the airframe is important in analysis of helicopter
vibrations and there has been at least one early attempt at address-
ing the problem analytically (ref. 58). From a practical point of
view, however, the complexity of the problem has been so overwhelming
that it has been customary to separately compute rotor vibratory
loads and then apply them to an analytical model of the airframe for
determining airframe responses. In this method, a (usually) sophis-
ticated aeroelastic rotor airloads program is employed to calculate
the rotor vibratory forces and moments acting at the hub assuming the
hub can not move (rotor rotation is, of course, permitted). These
vibratory loads are then imposed on an airframe finite-element model
to analyze vibrations. In an attempt to approximately account for
the effect of the rotor, an "equivalent" rotor mass is usually
included in the airframe finite-element model. Historically, most
predictions of vibrations have been based on the approach which has
just been described. It is clear that this approach can not account
for interactions between the rotor and the airframe. A simplified
view of how the rotor and the airframe interact to produce vibrations
is depicted in figure 27. Due to the cyclic nature of the airloads
acting on the blades of a turning rotor, the blades respond dynami-
cally and the resulting vibratory loads are transmitted to the air-
frame causing it to respond. The resulting airframe motions cause
the hub to vibrate which alters the aerodynamic loading on the blades
and hence the loads transmitted to the airframe. Depending on the
type and configuration of the hub, this interaction can substantially
alter the loads which are transmitted to the airframe and hence its
vibratory response. However, because of the complexity of such an
analysis, the simplistic approach described above was adapted by
industry as an early expedient to permit a rudimentary consideration
of vibrations. In this regard the method has served the industry
well. However, because of increasing demands for further reductions
in vibrations to achieve the goal of a "jet smooth" ride, it is now
recognized that the simplistic approach is no longer sufficient.
Analysis methods which accurately account for rotor-airframe coupling
must be employed in vibration design analysis.

Two of the earliest descriptions of practical methods for calcu-
lating vibrations of a helicopter as a single system may be found in
references 59 and 60. The analyses described in these references are
impedance coupling techniques which effect a solution in the
frequency domain rather than in the time domain. The impedance cou-
pling technique has been widely used for the vibration analysis of
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mechanical systems which are composed of an assembly of point-
connected components. In this approach each component is analyzed
separately and then coupled together by requiring equilibrium and
compatibility (i.e., matching forces and displacements) at each con-
nection point. In its application to the solution of the coupled
rotor-airframe problem (see, for example, ref. 60), the loads trans-
mitted by the rotor to the airframe are given by the hub loads calcu-
lated assuming the hub is fixed and a (linear) correction term which
accounts for small hub motions. The correction term is the so-called
rotor hub impedance matrix and is obtained by prescribing small hub
motions at the frequencies of interest and calculating the resulting
constraint forces and moments at the hub. It should be pointed out
that the gross vibratory forces exerted by the rotor on the airframe
are given by the fixed-hub forces and that these forces are not, in
general, computed by linear theory. The fixed-hub forces come from
the solution of the underlying nonlinear rotor equations with the
constraint that the rotor-airframe interface points are fixed. The
rotor impedance matrix represents a correction to the gross rotor
forces resulting from small displacements of the rotor from equili-
brium. It is a tenet of design to avoid resonant conditions, and if
such conditions are avoided, the displacements from equilibrium
should be small. Thus, a rotor model linearized in the guise of a
rotor impedance matrix should be nearly as good for vibration predic-
tion as the underlying nonlinear model. The impedance matrix of the
airframe at its interface with the rotor is calculated in a similar
manner. Compatibility relations are then written for the interface
forces and displacements leading to a set of coupled equations in
terms of impedances. The resulting "harmonic balance" equations are
a set of simultaneous linear algebraic equations which are solved for
the hub motions, from which the airframe vibrations are computed.

Calculations based on the theory developed in reference 59 are

compared with flight test data obtained on a Sikorsky H-34 rotor

blade for several rotor-related quantities. However, only limited

analytical results are shown for airframe vibrations and these are

for a different helicopter. Reference 60 reports correlations for a

tandem-rotor helicopter with three-bladed rotors. The correlations

are reproduced in figure 28. While these results fall outside the

period of time surveyed by this paper, they do represent some of the

earliest published comparisons of a coupled rotor-airframe analysis

with airframe vibrations measured in flight. Reference 61 reports a

correlation for a different tandem-rotor helicopter using the analy-

sis of reference 60. The relevant results are reproduced in figure

29. The rotor model was very crude. Specifically, only the fixed-

hub forces obtained from the equilibrium solution were retained in

the linearized rotor equations. The rotor impedance was ignored.

Reference 62 reports correlations for a compound helicopter with a

four-bladed hingeless rotor. Plots indicative of the correlations

are reproduced in figure 30. Nonlinear rotor equations were used in

that analysis, but the airframe was represented by impedances calcu-

lated using a simple stick model representation of the airframe. The

results of an early application of the C-81 flight simulation analy-

sis for computing airframe vibrations on a helicopter with a four-

bladed hingeless rotor are reported in reference 63. Computed
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results for the 4/rev hub vibrations are compared with measured
flight vibrations in figure 31. The airframe was represented by only
three modes: pitch and roll of the pylon about its focal point (the
test vehicle was equipped with a "focused pylon" vibration isolation
system) and a vertical rigid-body mode. A correlation performed for
a helicopter with a two-bladed teetering rotor is reported in refer-
ence 37. In this case, the analysis did not incorporate a model of
the rotor system. The procedure was to measure the flight vibratory
accelerations at the rotor hub and then to impose the measured values
of acceleration on a NASTRANfinite-element model of the airframe.
The calculated response of the airframe was compared with the
response measured in flight. Typical results for the major responses
are shown in figure 32. Reference 64 describes procedures developed
for correlating stresses derived from a NASTRANfinite-element model
of the Bell 214A helicopter with stresses measured in flight.
Although the flight tests were aimed at static structural qualifica-
tion of the airframe in design maneuvers and not vibration, it seems
appropriate to mention it here because C-81 was used to compute the

external forces which were applied to the NASTRAN model. Analytical

stresses were calculated by applying the internal loads calculated by

NASTRAN to the effective cross-sectional area at each of the strain-

gauge positions in the airframe as outlined in reference 64. Excel-
lent correlation was noted.

In an analysis of helicopter vibrations based on a finite-

element model of the airframe, the number of degrees of freedom in

the finite-element model must be reduced. Two approaches are cur-

rently recognized for making this reduction and still preserving the

essence of the finite-element model: (i) representing the airframe by

forced responses (i.e., impedances) calculated at a few frequencies

corresponding to the rotor harmonics of interest; and (2) represent-

ing the airframe by superposition of a few of the natural modes of

vibration. Whichever approach is used, data needed to represent the

airframe with a reduced number of degrees of freedom are calculated

by using a finite-element model of the airframe alone. Modal repre-

sentations can be used for reducing the number of degrees of freedom

when calculating any of the linear structural responses of interest

in practical flight dynamics. This includes problems of aeroelastic

stability and transient response as well as the present problem of

steady-state vibrations. This broad applicability has caused the

modal representation of the airframe to be the choice of developers

of computer simulations of the helicopter in flight (e.g., C-81,

CAMRAD, REXOR). Modal representations of the airframe are also used

in more specialized coupled rotor-airframe formulations (see, for

example, refs. 49 and 65). However, for vibration analysis done to

support design of airframe structures, there are several attendant

advantages to representing the airframe by harmonic forced responses.

Hence, developers of new codes specifically for computing coupled

rotor-airframe vibrations have tended to represent the airframe in

terms of harmonic forced responses.

There have been several research studies using simple math mod-

els of coupled rotor-airframe systems to gain physical insight into

the helicopter vibrations problem and to identify governing parame-
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ters. References 66 to 74 contain solutions of such simplified
rotor-airframe systems and relevant subsidiary analysis procedures.
These and other studies have all shown that the coupling between the
rotor and the airframe has a major effect on all aspects of vibra-
tion. In addition to studies using simplified models, there has been
some work in developing equations of motion of coupled rotor-airframe
systems which devotes particular attention to nonlinearities associ-
ated with the rotor contributions to the coupled equations of motion
(refs. 75 to 78). Reference 75 addressed the problem of developing a
general approach for the dynamic analysis of gyroscopic structures
composed of point-connected substructures by a component mode synthe-
sis technique. The resulting formulation was intended to permit the
determination of the modal characteristics of a helicopter. The
mathematical model underlying the formulation, as well as the simpli-
fied model of a helicopter used to illustrate the formulation, are
shown in figure 33. A computational procedure for deriving explicit
equations of motion for such dynamical systems using symbolic manipu-
lation is described in reference 76. Reference 77 derived the gov-
erning equations of motion for a helicopter rotor with blades having
freedom in flap, lag, and torsion coupled to an airframe modeled as a
rigid body with three translational and three rotational degrees of
freedom. The resulting differential equations are nonlinear and con-
tain periodic coefficients associated with forward flight. Reference
78 derived the governing equations for rotor and airframe subsystems
to use in an impedance matching approach to coupling. The reference
also described a procedure for solving the resulting nonlinear equa-
tions for the coupled vibratory response by an iterative, combined
harmonic-balance, impedance-matching method.

In recent years there have been several attempts to formulate a
general method of vibration analysis suitable for airframe structural
design work. These efforts have specifically addressed practical
methods for calculating helicopter vibrations. Some of these endeav-
ors are discussed below.

Dissatisfaction with first generation predictive capability for
helicopter performance, loads, and vibrations motivated the Army to
begin development of the Second Generation Comprehensive Helicopter
Analysis System (2GCHAS). As a consequence of predesign studies
related to 2GCHAS, several special-purpose codes have been developed
by industry for solution of dynamics problems of coupled rotor-
airframe systems, including vibrations. Two of these are RDYNE
(ref. 79) and DYSCO (refs. 80 and 81). RDYNE (Rotorcraft System
Dynamics Analysis) employs a time-history analysis for computing
rotorcraft response (stability or vibrations). A substructures
approach is employed to model the helicopter. The program has been
applied to at least one flight vibrations analysis, which is dis-
cussed later. Another code that had its genesis in the 2GCHASprede-
sign studies is DYSCO (DYnamic System COupler). The DYSCOprogram
has been under development since 1978 with both corporate (ref. 80)
and government (ref. 81) funding. The program forms coupled equa-
tions of motion using the uncoupled equations of each component.
Each component may contain periodic, nonlinear, and nonanalytic
effects. Solutions can be effected in either the time or frequency
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domain. There is no note in the literature of its use to calculate
coupled rotor-airframe vibrations.

The SIMVIB (Simplified Vibration Analysis) code was developed
under Army sponsorship to provide a design tool for predicting vibra-
tions and for use in research studies (ref. 82). The analysis is
based on a substructures approach and consists of a base program and
a set of external programs (fig. 34). While emphasis is placed on
obtaining solutions for steady-state vibrations by a harmonic balance
method, other types of solutions are available. The results of lim-
ited correlations with data obtained from wind-tunnel tests of dynam-
ically scaled models which include higher harmonic control effects
are presented in that report. On the basis of these comparisons it
was concluded that trends of vibration with airspeed could be pre-
dicted. A recent "application" of SIMVIB to the SH-60B Sea Hawk is
reported in reference 83. In this case the rotor impedance was not
calculated by the program. Instead, 4/rev vibratory hub loads meas-
ured on the UH-60 were scaled to the SH-60B and imposed (within
SIMVIB) as known exciting forces on a six-mode representation of the
airframe. Comparisons of predicted vibration levels with those meas-

ured in flight are given in figure 35.

Reference 84 is an outcome of recent efforts at the NASA Langley

Research Center to establish foundations for adequate representation

and treatment of the airframe structure in design analysis of heli-

copter vibrations. The report presents a body of formulations for

coupling airframe finite-element analysis models to rotor analysis

models and calculating airframe vibrations. The rotor is represented

by a general set of linearized differential equations with periodic

coefficients, and the connections between the rotor and airframe are

specified through general linear equations of constraint. Coupling

equations are derived and then applied to combine the rotor and air-

frame equations into one set of linear differential equations govern-

ing vibrations of the rotor-airframe system. These equations are

solved by the harmonic balance method to yield the system steady-

state vibrations. A key feature of the solution process is to repre-

sent the airframe in terms of forced responses calculated at harmon-

ics of the rotor rotational frequency. A method based on matrix par-

titioning is presented for quick recalculations of vibrations in

design studies when only relatively few airframe members are varied.

A parallel development is given for the case in which the rotor is

represented by impedances. All relations are presented in forms

suitable for direct computer implementation. An illustration of this

is given in figure 36 in which the coefficient matrix in the general

harmonic balance equations retaining all the harmonics has been

pulled out to show its structure. The explicit and practical nature

of the formulation is illustrated by the example of the formula for

the rotor contributions to the harmonic balance equations shown at

the bottom of figure 36. Matrices appearing in the formula, such as

KRLP, come directly from the linearized rotor equations and parame-

ters, such as ULC, are computed by very simple algorithms which are

provided. Such explicit formulas, FORTRAN-like notation, and the

blueprint-like representation of matrices are used throughout the

report to facilitate computer implementation.

89



Among the many activities being conducted under the DAMVIBS pro-
gram is one aimed at evaluating existing analysis methods for calcu-
lating coupled rotor-airframe vibrations. In the initial effort in
this area Bell, Boeing, McDonnell Douglas, and Sikorsky have applied
in-house methods for coupled rotor-airframe analysis to calculate
vibrations of the AH-IG helicopter. Comparisons were also made with

existing Operational Loads Survey data (refs. 85 and 86). A finite-

element model of the AH-IG airframe was adjusted by Bell to corre-

spond to the aircraft configuration used in the loads survey. The

updated model was furnished to the other participating manufacturers

as part of the common data utilized for the subject study. Bell was

also required to provide to the other companies a summary of all

modeling, testing and correlation work conducted on the AH-IG

(ref. 38). Bell was further required to assemble the flight vibra-

tion data to be used in the correlation and to describe the rotor

system both mechanically and aerodynamically to the other partici-

pants (ref. 87). The aforementioned exercise on the AH-IG has been

completed and the results have been presented at NASA/industry meet-

ings held under the DAMVIBS program. Draft final reports have been
submitted and are under NASA review. The comparisons shown in fig-

ures 37 and 38 are illustrative of the results obtained. Figure 37

shows a comparison of measured 2/rev and 4/rev vertical vibrations

with predictions made by Bell using C-81. A summary of their results

may be found in reference 88. Figure 38 shows a comparison of 2/rev

vertical and lateral vibrations predicted by each of the four indus-

try participants. These results were also compared with measurements

at two locations in the airframe. The analytical results obtained by

the four companies for the 2/rev vertical, lateral, and longitudinal

vibrations are in fair to poor agreement with measured flight data.

It should be noted that 2/rev is the primary main rotor excitation in

the airframe. Best agreement was generally obtained for vertical

vibrations; the worst for the lateral vibrations.

Boeing Vertol has recently implemented an impedance-based

coupled rotor-airframe analysis (developed in-house) based on the

concepts in references 60 and 61. The method (which was employed in

the aforementioned AH-IG activity) is described in reference 89.

Analytical results obtained for a wind-tunnel model and compared to

test data showed, as had earlier studies, that results which include

coupling differ significantly from results obtained without coupling.

More important, however, their analyses also indicated that mechani-

cal impedance effects predominate over aerodynamic effects for the

scale model tested. If this result remains true for full-scale con-

figurations, it would mean that a good approximation of rotor impe-

dance for use in coupled rotor-airframe vibrations analyses could be

obtained by neglecting (or at least drastically simplifying) the

rotor aerodynamics. Because the computational effort required to

compute rotor impedances which include aerodynamic effects is usually

significant, any substantial reduction in the level of aerodynamic

sophistication would greatly reduce these computations. This is an

area that needs to be investigated further.

There are two NASA in-house activities of note related to
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coupled rotor-airframe vibrations being conducted in support of the
DAMVIBS program. The first activity is part of a continuing effort
aimed at evaluating existing methods of analysis for coupled rotor-
airframe vibrations. Work has been initiated toward the application
of the SIMVIB analysis to the OH-6A helicopter (fig. 39) used in a
recently completed NASA/Army Higher Harmonic Control flight test pro-
gram (ref. 90). Analyses will be made with and without higher har-
monic control and compared with similar results obtained in flight
test. Current plans are to also evaluate the DYSCOanalysis with
respect to its applicability for computing coupled rotor-airframe
vibrations. The other activity is aimed at developing new computa-
tional procedures for coupled rotor-airframe vibration analyses.
The primary effort here will be to encode the computational proce-
dures for coupled rotor-airframe analysis and reanalysis which are
outlined in reference 84.

It is clear that further work is needed in analysis of coupled
rotor-airframe vibrations. Current plans are to conduct another

industry-wide coupled rotor-airframe vibrations analysis under the

DAMVIBS program, this time utilizing a helicopter with a four-bladed

articulated rotor. Also, in an attempt to identify the importance of

aerodynamics in rotor impedance calculations, parametric studies will

be conducted in-house by NASA to evaluate the effects of rotor aero-

dynamic and structural modeling assumptions on predicted airframe

vibrations. Current Army plans call for some combined in-house and

contractual efforts aimed at validating existing codes for coupled

rotor-airframe vibrations analysis using both model and full-scale

data.

Airframe Structural Optimization

The design of aerospace vehicle structures to satisfy static and

dynamic specifications is a complex process. This has become espe-

cially true for modern helicopters primarily because of increasingly

stringent requirements for low vibrations. The structural design

process involves the merging of an analysis procedure with a resizing

and reanalysis procedure in which changes are made to the structure

in an iterative process until a converged design that is best or

optimum in some sense is obtained. With regard to the airframe

structural design process, the selection of the best airframe that

meets all the requirements, in particular the vibration requirements,

is a difficult task. It would appear that structural optimization

tools, properly brought to bear by the design engineer, could go a

long way toward achieving the goal of a design analysis capability

for vibrations. Indeed, even the automation of as much of the cur-

rent design process as possible would clearly serve to reduce design

time and hence cost.

The objective of structural optimization is to design a struc-

ture that minimizes a specified function while satisfying a set of

restrictions imposed on the design. The function with respect to

which the design is optimized is called the objective function

(alternative names which are sometimes used are performance index and
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merit function). For aircraft structures, weight is usually taken to
be the objective function. However, the objective function can be
any quantity of interest. The restrictions placed on the design that
must be satisfied to produce an acceptable design are collectively
called constraints. Typically, constraints impose upper or lower
limits on quantities such as stresses, displacements, natural
frequencies, and structural parameters which are varied. Optimization
procedures start with an arbitrary (but usually feasible) initial
design and proceed by varying structural parameters in stepwise fash-
ion so that the value of the objective function is reduced. The
search is terminated when no further reduction can be made in the
objective function without violating some of the constraints. The
parameters which are varied during the iterative design process are
called design variables. Examples of design variables include member
sizessuch as thicknesses of panels and cross-sectional areas of
stringers, ply thicknesses and fiber orientation angles in composite
material laminates, and physical properties of materials. The opti-
mization problem is nonlinear if either the objective function or any
of the constraints are nonlinear functions of the design variables.
This is the usual case for the class of structural optimization prob-
lems which are of interest here.

A design-optimization algorithm consists of an analysis of the
structure and modification of the design variables at each iteration.
The number of iterations depends on the number of design variables
and on the nature and number of constraints. Analyses of most aero-
space vehicle structures are based on some type of finite-element
model. Modification of design variables can be achieved by employing
an optimizer which is based on either a nonlinear mathematical pro-
gramming method or an optimality criterion method. Optimality crite-
ria methods have the longest history. The basis for this approach is
the a priori specification, based either on intuition or rigorous
mathematical considerations, of a set of conditions to be satisfied
by the optimum design. The premise is that when the structure is
sized to satisfy the condition, the objective function automatically
attains an optimum value. The algorithm which is formulated to res-
ize the structure is usually recursive in nature. The concept of a
fully-stressed design, which has been widely used in static struc-
tural design, is perhaps the best example of these methods. Nonli-
near programming (NLP) methods have their origins in the field of
operations research. These rigorous methods are applicable to a wide
range of problems, of which structural optimization represents only
one particular application. NLP methods use derivatives to determine
move directions in the design variable space. Their main drawback is
that the derivatives may be costly to calculate, especially when the
number of design variables is large. However, the capability to
treat all types of objective and constraint functions makes these
methods very versatile. This is the method of choice for most cur-
rent work related to structural optimization.

Since the beginning of the "modern" field of structural optimi-
zation in 1960 (ref. 91), the published literature in the field has
literally exploded with new papers. For example, reference 92, which
summarizes aeronautical applications of formal optimization methods,
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identified over 8000 aeronautically related titles (including 1381 on
structural optimization) covering various periods between 1964 and
1980. However, despite its long history and continued widespread
interest, as noted in reference 92, there have been few successful
genuine applications to aeronautical problems. In so far as the
helicopter community is concerned, interest in optimization as it
might be employed in helicopter design goes back only a few years. A
preliminary evaluation of optimization techniques as they relate to
typical helicopter design problems is reported in reference 93. The
paper describes the manner of combining nonlinear programming algo-
rithms with conventional engineering analyses and summarizes the
results of applying such algorithms to four different rotor design
problems. The results obtained demonstrated that closed-loop design-
oriented analyses can significantly reduce design time. The 39th
American Helicopter Society Forum the following year featured a panel
devoted to the subject (ref. 94) as well as two papers (refs. 95 and
96). The composition of the panel and the topics addressed are indi-
cated in figure 40. References 95 and 96 treated the related topics
of designing a rotor blade for minimum hub vibrations and of desig-
ning a blade for placement of natural frequencies, respectively.
More recently in 1984, a NASA Symposium on Recent Experiences in Mul-
tidisciplinary Analysis and Optimization held at Langley Research
Center (ref. 97) devoted an entire session to rotorcraft applications
(fig. 41). Additional applications are reported in references 98 and
99. Two recent surveys of the application of structural optimization
methods to helicopter design problems are given in references i00 and
i01. All of the aforementioned references reporting on rotorcraft
applications of structural optimization have addressed the rotor sys-
tem. There has been very little published work within the rotorcraft
community relating to structural optimization of the airframe subject
to vibration response constraints. The remainder of this section
will address work which has been done that is applicable to the air-
frame. The section concludes with a status report of related in-
house work.

The basic idea of airframe structural optimization under vibra-
tion constraints is to design the airframe structure in a way that
minimizes the vibratory response in the important areas. It is
beyond the scope of current design-optimization codes to treat each
element of a structure as a variable in the iterative process.
Hence, it is necessary to identify those few elements in a structure
that should be treated as variables and modified to effect a reduc-
tion in vibrations. This identification process constitutes a task
in sensitivity analysis. In its formal implementation sensitivity
analysis involves calculating changes in the structural response with
respect to (small) changes in the design variables. Such sensitivity
derivatives are used by all NLP-based optimization methods. As men-
tioned earlier, the computation of these derivatives may be costly
when the number of design variables is large. Informal implementa-
tions of sensitivity analysis are usually based on considerations
related to some physical characteristic or behavior of the system,
such as the distribution of element strain energies. Hence, they are
usually employed in optimality criteria based methods. To date, most
applications of optimization to helicopter airframe structures have
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employed optimality criteria type methods. Reference 102 considers
two strain-energy methods for structural modification (detuning) to
achieve vibration reduction. The first method is based on the modal
strain energy concept wherein elements having the highest strain
energy density in a mode are taken to be the best candidates for
modification to obtain a maximum frequency change of that mode for a
minimum weight penalty. The second method is an extension of the
concept of modal strain energy to the case of damped forced response
wherein the strain energy density is determined for all the struc-
tural elements under steady-state vibratory loading. The elements
with the highest strain energy densities are taken as the best candi-
dates for modification of the structural response condition under
study. The damped forced response (DFR) method is an extension of
the optimality criterion of uniform strain energy density proposed in
reference 103 for modes to the case of forced response. Several
applications of the DFR method are described in reference 102, one of
which is reproduced in figure 42. The figure shows the results of
using modal strain energy to tune the frequency of the fourth elastic
mode of the CH-47A. Based on the calculated strain energies, the

structure was stiffened (the thickness of ten elements in the forward

pylon and main cabin side panels was increased with a weight penalty

of 2.5 percent) to move a natural frequency (12.03 Hz) to a higher

position (12.74 Hz) with respect to the excitation frequency (11.45

Hz), thereby reducing the dynamic response. As the table shows, only

the single frequency of interest was significantly altered. A DFR

analysis of the modified airframe confirmed that the vibration levels

had been reduced with respect to those in the original structure in

the area of interest. Based on the studies conducted in reference

102, it was concluded that the DFR method is more general and thus

has a broader range of applicability than the modal strain energy

method. However, the modal approach is appropriate if the structure

is excited close to a resonance, as in the case of the CH-47A in fig-

ure 42. Application of the modal strain energy approach to the

CH-47C is reported in reference 104.

As part of an investigation of structural optimization tech-

niques for vibration reduction, reference 105 evaluated two tech-

niques for vibration reduction through local structural modification,

the forced response strain energy method of reference 102 and the

Vincent Circle method (ref. 106). The latter method is based on a

dynamic property of (damped) linear structures, first noticed by

Vincent of Westland Helicopters, Ltd. Vincent observed that under

sinusoidal excitation the response of a point removed from the point

of excitation traces out a circular locus in the complex plane when

any single structural element stiffness or mass parameter is conti-

nuously varied from minus infinity to plus infinity. The radius of

the circle and the location of its center are indicative of the

extent to which the parameter change can affect the response. Both

methods were applied to an elastic line model of the AH-IG airframe

(fig. 43). The objective was to reduce 2/rev vertical vibration at

the pilot seat due to 2/rev vertical excitation at the main rotor

hub. The results (fig. 43) indicated discrepancies between the two

methods. The DFR method points to the tail boom as the area having

the most potential for reducing vibrations at the pilot seat, while



the Vincent Circle method points to the pylon area. Based on the

studies conducted in reference 105 it was concluded that the Vincent

Circle method was appropriate as an identifier of important elements

when considering local effects in relatively simple structures. How-

ever, for complex structures involving many elements the DFR method

appeared to be preferable for indicating which structural elements

are most responsible for the dynamic amplification.

Other approaches to local structural modification aimed at
vibration reduction are described in references 107 and 108. Refer-

ence 107 describes a sensitivity analysis procedure based on taking

derivatives of the stiffness matrix to identify the elements most

influential on vibratory response. The method is demonstrated by

using a modified version of the elastic line model used in reference

72 and by choosing as design variables Young's modulus of elasticity

in each of the beam elements comprising the model. Reference 108

describes an approach for structural modification which utilizes not

only the analytical model but also dynamically scaled models, optimi-

zation techniques (via optimality criteria) with frequency con-

straints, and system identification methods. The reference illus-

trates the approach by applying it to a simple cantilever beam struc-
ture.

The papers dealing with structural modification cited above are

somewhat misleading. While the term "structural optimization" is

used, none of the papers apply structural optimization in the usual

way. Rather, the term is used to indicate that any local structural
modifications which have been made are the best based on ad hoc con-

siderations such as reduction of dynamic response or reduction of

strain energy in a member. It should be recognized, however, that

the methods described in those papers can be used as the first step

in a procedure for formal optimization because they can identify the

best few elements that can be treated as variables for reducing

vibrations. Once the sensitive elements are identified a formal

optimization procedure can be used to set the precise values of the

parameters characterizing those elements.

There has been considerable research on structural optimization

subject to dynamic constraints. Most of this work, however, is

related to studies in which the only dynamic constraints are those

imposed on natural frequencies. There is much less literature deal-

ing with the problem of structural response under dynamic loading in

which constraints are imposed on both dynamic responses and frequen-

cies. References 109 to iii are representative of work which is

applicable to this more general problem. These papers discuss a phe-

nomenon known as disjoint design space which complicates the struc-

tural optimization process for structures under harmonic excitation.

The problem is associated with airframe natural frequencies which may

move toward coincidence with a (fixed) forcing frequency as design

variables are changed during iteration. These resonances form barri-

ers which cause the feasible design space to be disconnected or dis-

joint.

The success of any optimization procedure rests primarily on the
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efficiency of the analysis tool which is used to analyze the struc-
ture after every update to the design variables, and to a lesser
extent on the efficiency of the optimizer. If the finite-element
model is large (which is usually the case), the analysis step con-
tributes significantly to the time for each iteration in the design
process. There has been considerable effort directed toward means
for reducing the time required for each iteration. Approximate
mathematical models obtained from a first-order Taylor series expan-
sion of the full finite-element model have been proposed to lessen
the analysis time. Other expedients such as the use of design vari-
able linking, reciprocal variables and constraint deletion have also
been proposed. Such methods are described in reference 112, for
example. There have also been attempts to develop algorithms for
efficient reanalysis of structures which have been locally modified
(see, for example, refs. 84, 113, and 114).

Motivated by participation in the initial planning stages of the
DAMVIBS program in early 1983, Ames Research Center began building a
breadboard structural optimization code for helicopter vibrations in
late 1983. The resulting code, called NASOPT, combines MSC/NASTRAN
(ref. 22) with the CONMIN optimization program (ref. 115) and is
described in reference 116. A recent application of NASOPT to the
problem of tuning a helicopter airframe for vibrations is described
in reference 117. One case addressed in that paper was to minimize
the vertical displacement at the pilot seat under 2/rev vertical for-
cing at the main rotor hub while subject to a frequency constraint on
the first vertical bending mode. The design variables were taken to
be the sectional area moments of inertia of each of the 22 beam ele-
ments comprising the longitudinal beam in the elastic line model.
The resulting iteration history for three of the design variables is
shown in figure 44.

The NASA Langley Research Center has a long history of research

in structural optimization (see, for example, the summary of

ref. 118). Most of this activity has, until quite recently, been

centered in the Multidisciplinary Analysis and Optimization Branch

(MAOB). In 1984 the Interdisciplinary Research Office (IRO) was

formed, with optimization personnel from MAOB as its nucleus, to pro-

vide a more focused repository of optimization research. While most

of the early Langley work on optimization has been directed to fixed-

wing aircraft, it has been generic in nature and should be applicable

to rotorcraft. Of particular interest in this regard is the method

for decomposing large optimization problems into smaller subproblems
described in reference 119. Some recent work directed to the dynam-

ics of rotor blades are reported in references 120 and 121.

As part of the NASA/industry rotorcraft structural dynamics pro-

gram, DAMVIBS, an in-house study was recently initiated at Langley on

optimization of rotorcraft airframe structures for vibration reduc-

tion. The objective of the research is to evaluate and develop prac-

tical computational procedures for structural optimization of air-

frame structures subject to steady-state vibration constraints. One

of the key ingredients to any approach based on a NLP method is

design sensitivity analysis. A method for computing the sensitivity
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coefficients for forced response behavior has recently been formu-
lated and implemented in MSC/NASTRANas a new solution sequence to
complement the already available static and frequency sensitivity
analyses. The results of an initial application of this design sen-
sitivity analysis to a simplified elastic line model of the AH-IG
helicopter are presented in reference 122. Some of the results from
that study are reproduced in figure 45 which shows computed dynamic
response sensitivities for the pilot seat with respect to elements in
the tail boom. The forced response strain energies associated with
the tail boom elements are also shown. The results show that ele-
ments in the tail boom would be likely candidates for modification to
effect a favorable change in the response at the pilot seat. It
should also be noted that elements with large sensitivities also gen-
erally have higher strain energies.

The Langley in-house work on airframe structural optimization
described above is continuing. Current near-term plans are to

include structural damping in the formulation for calculating forced

response sensitivities, to study the implications of computing sensi-

tivities of large finite-element models, and to interface the CONMIN

optimizer with the sensitivity analysis. Long-term plans are to

merge this airframe optimization activity with IRO activities on

rotor blade optimization and establish a joint activity aimed at pro-

viding a rudimentary technology base for optimization of coupled

rotor-airframe systems. Current plans are to also initiate some type

of airframe optimization activities (as yet undefined) with industry

under the DAMVIBS program. With respect to the NASOPT code developed

at Ames Research Center, current plans are for Ames to maintain the

code as a research tool for conducting basic research in structural

optimization; long-term plans for the code are unclear at this time.

VIBRATION CONTROL

The most significant vibration levels in a helicopter are caused

by the cyclic airloads acting on the main rotor as it rotates. The

resulting oscillating aerodynamic loads are transmitted to the fuse-

lage as vibratory forces and moments of a frequency equal to the num-

ber of rotor blades N times the rotational frequency or N/rev. The

character and magnitude of these vibratory loads have resulted in the

design of vibration control devices to reduce or minimize these

rotor-induced forced vibrations. Vibration reduction;concepts may be

separated into passive or active methods. Passive devices, as dis-

cussed in this paper, are absorbers in the rotating system, absorbers

in the fixed system, or rotor isolation systems. Active systems

sense vibration levels at one or more locations on the helicopter and

attempt to minimize the sensed vibration levels by use of some type

of active control feedback system. A variety of passive vibration

control systems have been developed and tested over the past 25

years. The Army and NASA have sponsored considerable research in

rotor isolation systems, hub absorbers, and blade absorbers. Refer-

ences 8 and 123 provide an excellent historical and technical pro-

spective of vibration control system development. Since 1975 the

Army and NASA have funded major vibration control system demonstra-

97



tion efforts in total main rotor isolation and higher harmonic con-
trol. There have also been some contracted research efforts for the
analysis and testing of hub-mounted and blade-mounted absorbers. As
previously pointed out, only Army and NASA research conducted in the
past decade will be specifically discussed.

Rotating-System Passive Absorbers

One of the simplest passive mechanisms for reducing vibratory
loads in the rotating system is the pendulum absorber. It consists
of a simple mass attached at a distance R from the center of rotation
by a mechanical linkage of smaller radius r (fig. 46). The spring
rate of the pendulum is controlled by centrifugal forces on the mass.
The pendulum natural frequency is proportional to the rotational
speed and the ratio of radii R/r. Therefore, the pendulum acts as a
vibration absorber when the pendulum natural frequency equals the
excitation frequency. Both blade-mounted and hub-mounted pendulum
absorbers have been used in production helicopter. Reference 124
describes a blade-mounted pendulum absorber system that was designed
for the Army AH-64. A general analytical study of pendulum absorber
dynamics is reported in reference 125. This analysis was later
extended to a frequency response analysis in which the spanwise air-
load distribution was varied harmonically to excite the rotor
(ref. 126). The response of this absorber is shown in figure 47.
Another type of rotating-system vibration absorber, the bifilar
absorber, is a centrifugally tuned, pendulum-like device mounted to
the main rotor hub. A bifilar absorber is shown in figure 48. Com-

ponents of a bifilar absorber consist of a support arm and sets of
bifilar masses each of which is comprised of a dynamic mass, and two

cylindrical tuning pins. These pins constrain the mass radially and,

together with the circular tracking holes in the support arm and

mass, define the pendular radius of the mass (ref. 127). The bifilar

rotor hub absorber has been used since the late 1960s. In support of

the bifilar development, a coupled rotor-bifilar-airframe analysis

was used to study the dynamic characteristics. This analysis was

validated by correlation with UH-60 and S-76 helicopter flight test

data as shown in figure 49 (ref. 128). In addition to industry-

sponsored bifilar research, the Army funded research to develop

advanced hub absorber concepts. A two degree-of-freedom rotating

system absorber, the monofilar (fig. 50), was analyzed and tested in

the early 1980's (refs. 129 and 130). The advantages of this concept

compared to the bifilar were reduced weight and the ability to pro-

vide vibration reduction at two frequencies. Coupled rotor-

monofilar-airframe analyses were conducted to design a monofilar con-

figuration for a four-bladed rotor under contract to the Army

(ref. 131). The system was tuned to reduce 3/rev and 5/rev rotating-

system forces. Ground test results showed a significant attenuation

of 3/rev in-plane rotating-system hub forces. However, attenuation

of the 5/rev loads was poor as a result of physical binding of the

monofilar components (ref. 131).
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Nonrotating-System Vibration Isolation

Although no Army or NASA in-house research has been conducted to
develop specific vibration reduction hardware, in the past ten years
efforts have been funded to demonstrate company-developed systems.
The most successful passive isolation systems have been based on the
anti-resonant (nodalization) principle. A schematic of an antireso-
nant isolator is shown in figure 51. By proper selection of the tun-
ing weight and arm length, the inertial force can be made equal and
opposite to the spring force, and therefore no N/rev vibratory forces
are transmitted to the fuselage. Several antiresonant vibration
reduction concepts have been investigated. One concept, described
in reference 132, is the Dynamic Antiresonant Vibration Isolator or
DAVI which was implemented by the KamamAerospace Corporation. The
Kaman DAVI is a passive isolator that provides a high degree of iso-
lation at low frequencies with low static deflections. Research and
development has been conducted on one-dimensional, two-dimensional,
and three-dimensional DAVIs (fig. 52). A two-dimensional DAVI system
was tested on a modified Army UH-IH helicopter to provide isolation

in the vertical, pitch, roll, and fore-and-aft degrees of freedom.

This test demonstrated that the DAVI-modified UH-IH had substantially

lower vibration levels (over 70 percent) when compared to the unmodi-

fied vehicle (fig. 53). The results of this test also demonstrated

that the use of the DAVI could, without affecting flying qualities,

reduce aircraft weight and lower operating costs due to lower mainte-

nance requirements (ref. 132). In a parallel development, Bell

tested a DAVI-type system called the NODAMATIC isolation system

(ref. 133). The NODAMATIC system consists of a focused pylon to iso-

late rotor inplane hub shears and moments and a nodal beam to isolate

rotor vertical shears (fig. 54). Boeing Vertol improved the DAVI by

replacing the elastomeric springs with metal springs to reduce inher-

ent damping. This new system, called the Improved Rotor Isolation

System (IRIS), also provided isolation at twice N/rev (refs. 134-136)

(fig. 55). The IRIS was designed and tested on a Boeing-owned BO-105

(fig. 56).

To demonstrate the full potential of passive isolation, the Army

in 1979 initiated a program for total (six degree-of-freedom) main

rotor isolation. The program was conducted in several phases which

included predesign studies, design and bench test, and flight test.

Predesign studies were conducted of two different mechanical isola-

tion system concepts (refs. 137 and 138). Both designs were deriva-

tives of the Kaman DAVI. A third concept, which used hydraulic iso-

lator units to achieve antiresonance, was also evaluated (ref. 139).

This hydraulic isolator is called the Liquid Inertia Vibration Elimi-

nator (LIVE) and is depicted in figure 57. The LIVE unit consists of

an inner cylinder which is bonded to an outer cylinder with a layer

of rubber. The inner cylinder cavity is filled with a high-density

fluid (mercury). Isolation is achieved when the dynamic pressures

create inertial forces which cancel the spring forces associated with

deformations of the rubber. Reference 140 describes an application

of LIVE. As a result of the predesign effort, the LIVE concept was

selected for detail design and bench testing of total main rotor iso-

lation. The success of this phase resulted in an Army-funded con-
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tract to install a Total Rotor Isolation System (TRIS) on the Bell

206LM helicopter. The testbed aircraft and the LIVE unit installa-

tion are shown in figure 58. The flight test data indicated that

over 95 percent reduction of hub 4/rev (26.3 Hz) vibration levels had

been achieved. Pilot seat vibrations were reduced to 0.04g through-

out the flight envelope, including the transition region which tradi-

tionally has high vibration levels (fig. 59). The prototype TRIS

installation had a weight penalty of 1.7 percent of the aircraft max-

imum gross weight. It was projected that the weight penalty could be

reduced to less than 1 percent (ref. 141) by manufacturing the LIVE

units out of lightweight material, instead of the stainless steel

used for the proof-of-concept test.

The Rotor Systems Research Aircraft (RSRA), which is shown in

figure 60, incorporated a passive isolation system. The system was

designed to provide a satisfactory aircraft vibration environment for

"any" rotor system installed on the aircraft. Although labeled the

"RSRA Active Isolation/Rotor Balance System" or AIBS, this system is

not "active" in the conventional sense. The AIBS (fig. 61) consists

of four piston-in-cylinder units which combine the effects of an air

spring for 4/rev passive isolation with a low frequency centering

action (for active control of transmission alignment). The effective

spring rate of the passive isolation system is controlled and set

prior to flight by the precharge pressure of the system accumulators.

Thus, the AIBS does not sense and react to changing flight vibration

levels in the normal sense of "active" control. The hydropneumatic

isolation system is described in reference 142. Although the reduced

vibration levels measured during the RSRA isolation system shakedown

flight test program were encouraging, the isolation system was not

optimized for minimum cockpit vibrations and the potential for addi-

tional improvement exists (ref. 142).

Active Vibration Suppression

Active vibration suppression systems, as discussed in this sec-

tion, sense vibration levels at one or more locations on the airframe

and actively minimize the sensed vibration levels by the use of an

automatic feedback system (fig. 62). Because the primary source of

helicopter vibrations is the rotor, it is logical to use the feedback

system to manipulate the rotor blades to modify the aerodynamic exci-

tation forces, thus reducing the airframe vibrations. The potential

of direct rotor control to minimize vibrations has been studied since

the 1960's. The early work, however, was limited to analytical

studies because adequate hardware did not exist to implement a system

(ref. 143). The use of active means for suppressing vibratory loads

transmitted to the airframe in flight has become feasible with

advances in high-speed, lightweight microcomputers and with advances

in hydraulic servo-actuator technology.

One promising method of active vibration control, called Higher

Harmonic Control or HHC, superimposes nonrotating swashplate sinu-

soidal motions at the blade passage frequency upon the basic collec-

tive and cyclic flight control inputs. This approach to control
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vibratory loads has been the subject of several analytical studies by

both NASA Ames and the Army (refs. 144 and 145) and wind-tunnel tests

by both government and industry (refs. 146-148). These investiga-

tions, conducted on significantly different types of rotor systems,

all showed that HHC produced substantial reductions in vibration lev-

els transmitted to the airframe. Furthermore, the results indicated

that the amplitude of HHC blade pitch inputs required to achieve the

desired reductions was small, on the order of one degree.

In 1976, NASA Langley and the Army began some preliminary

research into applications of HHC. This work resulted in two major

activities which included: (i) wind-tunnel tests; and (2) a flight

test demonstration. The initial wind-tunnel tests were conducted

open-loop using trial-and-error for setting the amplitudes and phases

of the HHC inputs. While these open-loop tests validated the con-

cept, computerized control was needed to achieve optimum control of

all vibratory forces and moments. The open-loop and closed-loop HHC

test results on a dynamically scaled wind-tunnel model rotor were

reported in references 149 and 150. The HHC method for reducing

vibrations was demonstrated under contract using an OH-6A helicopter.

The preliminary design work, control law development, and flight test

results were reported in references 151 to 153. The open-loop and

closed-loop flight testing of the OH-6A showed conclusively that HHC

can reduce vibration levels in helicopters (fig. 64). Reference 90

constitutes a summary report for that program. Research has conti-

nued on HHC with Sikorsky flying the concept, open-loop, on an S-76

(ref. 154) and the Army funding two preliminary design studies for

implementation of HHC on current and future generation helicopters.

Although individual blade control has been promoted for vibra-

tion reduction using HHC, the complications of moving any control

system into the rotating system have slowed down advances in this

area. Several concepts of direct rotor control with individual

blades have been studied earlier (ref. 155) but to date none have

been tested. Higher Harmonic Control shows much promise for reducing

helicopter vibrations, especially for the next generation helicopters

that may have a fly-by-wire/light control system and a variable speed

rotor. The Army plans to extend HHC technology by sponsoring a

flight demonstration program using a modern, four-bladed, high-speed

helicopter. This program has been given the acronym SOFVIBS (Sup-

pression Of Flight VIBrationS).

The helicopter vibration problem is complex and much time,

effort, money, and man-power have been expended to reduce vibrations.

Nevertheless, the problem has not been completely solved and a great

deal more work remains for the helicopter community before the "jet

smooth" ride is achieved. The vibration reduction systems discussed

in this section only reduce vibrations that are transmitted mechani-

cally to the fuselage from the rotor. While the helicopter industry

has been able to significantly reduce these "mechanically-

transmitted" vibrations in the last 30 years, another source of

rotor-induced vibrations still must be addressed, in particular, wake

impingement on the airframe. Blade tip vortices create pressure

fluctuations on the fin and stabilizer that cause significant fuse-
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lage vibrations. These rotor downwash induced vibrations need to be

controlled or isolated from the fuselage before vibrations in the

helicopter fuselage can ever be totally eliminated (ref. 132).

VIBRATION TESTING

Vibration testing of helicopters involves experimental investi-

gations to establish and to verify airframe dynamics, flight vibra-

tions, and rotor-induced vibratory loads. Ground and flight vibra-

tion testing along with wind-tunnel testing are used to guide heli-

copter design and to evaluate vibration problems. For the most part,

wind-tunnel testing is conducted to verify rotor performance and

basic stability and control characteristics for straight and level

flight. In recent years, wind-tunnel testing has been conducted to

investigate the effects of main rotor wake geometry and aerodynamic
interactions on control surface effectiveness and vibration. As men-

tioned in the Introduction, rotor aeroelastic research and associated

wind-tunnel testing will not be specifically addressed in this paper.

What will be addressed in some detail is progress in helicopter

ground and flight vibration testing methodology. The emphasis of

this paper is on the fixed system, i.e., from the rotor hub through
the airframe.

Most structural dynamicists would probably agree that helicopter

vibration testing requirements are much more critical than corre-

sponding fixed-wing requirements. Vibration testing serves two valu-

able purposes in helicopter development. First, these tests provide

loads and vibrations data to verify design concepts. Second, vibra-

tion testing compensates for voids in existing analytical capabili-

ties. Helicopter vibration problems have been extremely difficult to

quantify and, as a result, have been solved during the development

cycle by trial-and-error testing. A major reason for these cut-and-

try methods has been a lack of definitive procedures which make maxi-

mum use of vibration test data. As conventionally practiced, most

helicopter ground and flight vibration tests provide limited informa-

tion for resolving vibration issues. However, techniques have

evolved over the past decade from combined Army and NASA research

that provide systematic, as opposed to trial-and-error, procedures

for testing, correlating, and evaluating helicopter vibrations. For

the purposes of this paper, vibration testing is separated into four

categories, namely: (i) modal analysis; (2) system identification;

(3) structural modification; and (4) vibratory loads measurement.

Many scientists and engineers are engaged in rotorcraft vibration

research, and vibration testing research in the categories listed

above has increased substantially over the past ten years. The

majority of references listed in this paper emphasizes in-house and

contractual work conducted by the Army and NASA.

Modal Analysis

Modal analysis is the name given to techniques which extract

from test data the natural frequencies, orthonormal modes, and modal
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dampings of a structure. These modal parameters are most often used

to verify analytical models and to determine which parts of a struc-

ture contribute to a given mode of excitation. The theory of modal

analysis dates back to the 1940's (ref. 156). There have been some

methods which use time domain data (refs. 157 and 158) but structural

dynamicists traditionally perform modal analysis using frequency

domain data (refs. 159 to 167). The most common frequency domain

approach uses complex plane data (the so-called Kennedy and Pancu

plots or Nyquist circles). Figure 65 shows an example of these

frequency domain circles. The rate of change of arc length around
the circle and the diameter of the circle are used to determine the

modal parameters. Reference 168 presents a complete derivation and

application of this modal analysis methodology. The availability of

Fast Fourier Transform signal analyzers in the early 1970's provided

the means to apply the Kennedy and Pancu theory (ref. 156) with

speed, accuracy, and fidelity. Modal analysis accuracy is typically

verified by comparing measured frequency responses with synthesized

frequency responses which are calculated using the identified modal

parameters. Figure 66 shows a comparison between test and analysis

for frequency response measurements on an AH-IG helicopter. The

ordinate shift evident in the real part of the response is caused by

the rigid-body contribution which was not included in the synthesized

curve. The rigid-body part is normally calculated from weights and

geometry information.

In the past twenty years helicopter designers have used sophis-

ticated finite-element computer programs for sizing the structure to

meet static load requirements and to provide for the normal analyti-

cal checks on vibrations. Accurate dynamics models of airframes are

necessary not only to assess vibration design against specifications

but to evaluate the vibration effects of configuration changes.
Numerous researchers have conducted correlation efforts of finite-

element model predictions with vibration test measurements

(refs. 29-31, 34, 38, 42, 47 and 48). From a dynamics perspective,

natural frequencies and mode shapes have been used as fundamental

parameters for verifying the accuracy of analytical models. For

example, figure 67 compares calculated and measured mode shapes of an

OH-58 composite tail boom. Elaborate correlation efforts of Army

CH-47D, UH-60A, AH-64, and ACAP airframes have also been conducted by

the helicopter industry under contract to NASA (the DAMVIBS program)

to evaluate the state of the art in finite-element modeling. Besides

comparing the fundamental modal parameters, frequency response com-

parisons between shake test and analysis were used to assess the air-

frame modeling accuracy. The results of these correlation programs

have much in common. First, the presence of modes in analysis which

are not present during test and vice versa. Second, good accuracy on

natural frequencies (less than 5 percent) but correspondingly poor

accuracy on frequency response. And finally, the frequency range of

acceptable correlation is only from 5 Hertz to about 20 Hertz.

Detailed discussions of these correlation efforts were presented in

the vibration analysis section of this paper.

Extensive ground vibration testing of an AH-IG helicopter

(fig. 68) was conducted about seven years ago to obtain data for ver-
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ifying shake test methods and modal analysis techniques. A signifi-

cant finding from this shake test program was the measurement of com-

plex modes (modes that have real and imaginary components) in the

frequency range of interest (fig. 69). Reference 163 provides an

excellent description of the cause and effect of complex modes. In

short, complex modes can result when damping is not uniformly dis-

tributed throughout the structure. As a result, the phase between

response and excitation is not constant and the mode shapes change

with time. In the case of the AH-IG, this "nonproportional" damping

was more than likely caused by the highly damped elastomeric mounts

used to attach the transmission to the airframe. For classical modes

the real part of the frequency response has two turning points near

resonance while the imaginary part has one turning point. The first

mode of figure 66 is an example of a classical mode. However, the

character of the real and imaginary frequency responses can reverse

for complex modes. Figure 69 illustrates this effect for an almost

pure imaginary complex mode at 45 Hertz. As a consequence of this

research, improved shake test methods have been developed in terms of

both frequency response measurement and modal analysis accuracy

(refs. 169 to 173). These improved measurement techniques include

criteria for determining response linearity, reciprocity, complex

modes, local modes, and frequency resolution. The improved modal

analysis techniques which are now available provide a more accurate

and consistent data base for system identification and finite-element

correlation of complex helicopter structures.

System Identification

Uncertainties inherent with analytical modeling techniques have

made experimental modeling a viable approach for augmenting struc-

tural dynamics analysis (refs. 168, 174 to 192). The process of

obtaining structural dynamics equations of motion or improving exist-

ing mathematical models using ground vibration data has been termed

system identification. System identification deals with finding
impedance-type matrices which are abstract inverses of measurable

natural properties of a structure. The objective of system identifi-

cation is to use these mathematical abstracts for estimating struc-

tural response characteristics. The origin of system identification

goes back to the 1960's (ref. 174), but most of the theoretical

development and validation work was performed in the mid to late

seventies. The data required to experimentally derive the equations

of motion are the natural frequencies, orthonormal mode shapes, and

modal dampings which characterize the frequency spectrum of interest.

These parameters are used to determine mass, stiffness, and damping
matrices which define the equations of motion. The model which is

formulated from this system identification process is called a "trun-

cated model" because there are fewer modes used to determine the

model than degrees of freedom in the structure (ref. 175). Multiple

regression is used to solve for the constant coefficient matrices

which make up the equations of motion. The regression parameter is

the difference between the actual frequency response and the approxi-

mated frequency response obtained by using a finite number of modes.

The primary application of this truncated model is to predict the
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effects of mass and stiffness changes on natural frequencies and mode

shapes. Computer experiments have verified the accuracy and limita-

tions of the method (refs. 176 and 177). In addition, the truncated

model methodology has been applied using AH-IG airframe modal test

data. Predicted changes in natural frequencies and mode shapes were

compared with test results to assess its usefulness (ref. 168).

Another system identification technique which provides a capa-

bility for improving an existing analytical model is the so-called

"incomplete model" theory (refs. 178 to 181). This method uses natu-

ral frequency and mode shape test data to update or improve mass and

stiffness matrices. The approach which is used to create the incom-

plete model assumes that the measured modal data are correct and

forces the analytical mass matrix to be orthogonal with the measured

modes. Multiple regression is used to solve for the smallest pos-

sible changes (in a least-squares sense) that satisfy the specified

conditions. In a similar manner, the modal data and improved mass

matrix are combined to improve the stiffness matrix. The requirement

for small changes is not necessary and is only assumed so that the

improved model still represents the physical structure. Engineering

judgement is required to determine acceptable values for these small

changes. A measure of accuracy of the improved analytical model is

obtained by comparing predicted frequency responses with test data.

It should be pointed out that current finite-element models do not

incorporate nonproportional damping and hence can not account for the

effects which lead to complex modes. There has been some research to

develop methods for converting complex modes obtained from test into

classical (or real) modes for model improvement purposes (ref. 182).

The usefulness of these procedures is questionable if the improved

model cannot be used to calculate frequency response for the struc-

ture being tested. Another criterion for evaluating the usefulness

of the incomplete model is its ability to predict the effects of a

change. Figure 70 illustrates how the incomplete model predicts mode

shape changes due to mass and stiffness configuration changes. The

solid curves represent the original mode shapes for a simply sup-

ported beam. The new mode shapes, shown by the dashed curves, were

calculated using the exact beam equations. The data points in figure

70 were determined using the incomplete model. However, one of the

major problems associated with system identification technology is

the inability to physically interpret the changes which are identi-

fied by the analysis. Model improvement techniques must be developed

such that mass and stiffness changes to the original models are phys-

ically meaningful as well as mathematically sound. There has been

some research outside of the Army and NASA on methods which use test

data to identify modeling errors (ref. 183). These techniques pro-

vide information to the analyst as to which model parameters are

causing discrepancies between test and analysis. New ideas such as

these may provide the means for implementing system identification as

part of helicopter vibration design.

Structural Modification

Research into techniques which predict changes in structural
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dynamics or flight vibrations due to structural modifications has

been under way for about fifteen years. One of the first concepts

for evaluating vibration reduction through structural modification

was reported in reference 193. The so-called Vincent Circle method

(ref. 193) was described earlier in the Airframe Structural Optimiza-

tion section. This methodology has been applied and extended by

numerous researchers (refs. 105-108 and 194-202) over the past ten

years. For the most part the Army requirement for these procedures

was motivated by vibration problems which surfaced during helicopter

development testing. More recent Army research has concentrated on

combining structural modification methodology with ground and flight

vibration data to evaluate the effects on vibration. This integra-

tion of structural modification with vibration testing has also been

referred to as "analytical testing" (ref. 195). Unlike the typical

finite-element modeling approach, there Js no airframe math model

that has to be created or modified such that it correlates with shake

test results. The only analytical model required is the structural

change as characterized by single-point or multi-dimensional impe-

dance adjustments. These modifications include simple mass, absor-

ber, isolator, and collinear stiffness changes as well as more ela-

borate skin, stringer, or component changes. The operational equa-

tions require only baseline vibration data and the impedance change

dynamics. Computer experiments have been conducted to demonstrate

the usefulness of this methodology (refs. 195 to 197). The method

has also been applied using AH-IG ground and flight vibration test

data (refs. 195 and 198). Figure 71 illustrates how the method can

be used to predict changes in cockpit vibration due to an absorber

located on the vertical fin. In this example, the "remote" absorber

was tuned for both frequency and damping to produce zero vibration at

the required flight condition. Additional work is under way by Army

researchers to validate the analytical testing methodology. The

approach taken is to analytically make a change, predict its effect,

and then to physically make the change, test the change, and compare

the test results with analysis. This methodology has been verified

on a generic helicopter model (fig. 72). Further research is being

conducted to validate analytical testing using OH-58A ground vibra-

tion data and simulated flight test data. Successful implementation

of this structural modification methodology will provide a much

needed capability to respond to Army field problems and to eliminate

costly trial-and-error testing.

Vibratory Loads Measurement

Higher than expected vibratory loading is a fundamental cause of

high maintenance manhours and low component reliability. In general,

the most critical vibratory loads are generated by the main rotor and

occur at the blade passage frequency or N/rev. An accurate knowledge

of these vibratory loads is needed to improve rotor design, to

evaluate vibration control devices, and to establish fatigue charac-

teristics. In particular, the helicopter industry spends substantial

resources to reduce vibratory loads in an effort to increase reliab-

ility. If the vibratory loads were known, then "ground" flying could

be performed on the complete helicopter using these loads to simulate
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flight. Thus, around-the-clock fatigue testing could be used to

evaluate system reliability. Besides reliability testing, ground

flying can be used with structural modification testing to evaluate

and implement potential fixes to vibration problems before failures
occur in the fleet.

The most common approach for measuring vibratory rotor loads

(both hub shears and moments) uses strain gages on the main rotor

shaft. Slip rings are required to transmit signals from the rotating

system to the fixed system. Because this method was costly, slow,

and often unreliable, Army research began in the mid 1970's on a

method called Force Determination which uses airframe response

measurements and shake test calibration data to determine the main

rotor hub vibratory loads (refs. 203 to 206). Force Determination is

a multiple regression technique (least-squares curve fit) which mini-

mizes the differences between measured responses and calculated

responses. All instrumentation is located in the fixed system (no

slip rings are needed). Accelerometers and strain gages are distrib-

uted throughout the airframe to introduce a high degree of measure-

ment independence and redundancy. The method has been verified on a

generic helicopter dynamic model and full-scale aircraft (refs. 203

and 205). Figure 73 compares flight test, Force Determination calcu-

lated, and ground flying vibration levels at several points along an

AH-IG airframe. These results demonstrated that the calculated main

rotor hub loads can be used to synthesize actual flight vibrations

accurately and with the correct distribution. Force Determination

was also applied to a UH-I helicopter (fig. 74) to evaluate rotor

isolation system effectiveness (ref. 203). In this case the calcu-

lated loads for the baseline aircraft were combined with forced

response measurements obtained from shake testing the aircraft with

the isolation system installed. The predicted "new" flight vibra-

tions were consistent with flight measurements and gave credibility

to the method. Additional work has been performed by other

researchers to improve Force Determination (refs. 207 and 208). Army

in-house research is being conducted to evaluate the limitations of

the method and to develop a full-scale reliability testing capabil-

ity. Several technical issues which are being investigated include

shaker cross talk, load versus response linearity, phase shift sensi-

tivity, and shaker attachment (boundary condition) effects on the

frequency response calibration data. There are other applications of

this technique which are planned through Army in-house research. For

example, Force Determination will be used to study the vibration

effects of main rotor downwash impingement and main rotor wake inter-

actions on tail surfaces.

There is considerable Army and NASA research in vibration test-

ing planned for the next five years. Most of the work emphasizes

verification of current methodologies such as System Identification,

Analytical Testing, and Force Determination. Emphasis will be placed

on using these new vibration testing methods to develop systematic

procedures for solving vibration-related problems. Research will

also be performed to demonstrate the applicability of these new meth-

ods on composite rotorcraft. Finite-element modeling correlation of

composite structures, in particular the Army ACAP airframes, is also
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planned. Other research issues which will be addressed through com-

bined Army and NASA research include standardization of vibration

testing methodology. This standardization will include not only

vibration testing procedures but also data acquisition and analysis

methodology. The results of these efforts will identify how tests

should be performed, what data should be taken to meet vibration

testing objectives, and what data analysis procedures give the best
results.

CONCLUDING REMARKS

Excessive vibrations have plagued virtually all new rotorcraft

developments since the first U.S. helicopter went into production

over forty years ago. The problem is pervasive and transcends

national boundaries. The impact of excessive vibrations on new heli-

copter development programs is significant, both with respect to

increased development costs and slipped delivery schedules. Helicop-

ter companies have relied little on analysis during design to limit

vibrations. With few exceptions, helicopters have been designed to

performance requirements and excessive vibrations were then "tinkered

out" during ground and flight testing. With continued expansion of

flight envelopes and more stringent requirements for crew and passen-

ger comfort and component reliability in modern helicopters, the
requirement for low vibrations has achieved the status of a critical

design consideration. It is clear that vibrations can no longer be

addressed in an ad hoc fashion. There is now a recognized need to

account for vibrations more rigorously in both the analytical and

experimental phases of design. With this as a background, this paper

has presented a summary of NASA and Army contributions, both in-house

and contractual, to rotorcraft vibrations and structural dynamics

technology over the last decade or so. Specific topics that were

addressed include: airframe finite-element modeling for dynamic ana-

lysis, coupled rotor-airframe vibrations, airframe structural optimi-

zation, active and passive control of vibrations, and integration of

testing and analysis in such guises as experimental modal analysis,

system identification, structural modification, and vibratory loads

measurement (force determination). The status of current activities

being conducted under major NASA and Army programs, as well as near-

term plans, were also described. Viewed as a whole, it is fair to

say that the work described constitutes an important contribution to

the critical elements of the technology base needed to achieve the

goal of a "jet smooth" ride. However, much work still needs to be

done before this goal can be reached. To this end, both NASA and the

Army have substantial in-house and contractual research activities

planned over the next five to ten years. The ultimate success of

these efforts will depend not only on the development of more

reliable vibration design tools but also on the practical implementa-

tion of these tools into the design process by industry. It is left

for a status report ten years hence to judge whether we have been
successful.
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F igu re  1.- The S ikorsky  R-4, t h e  f i r s t  U.S. p roduc t i on  h e l i c o p t e r .  

F igu re  2.- Sov ie t  Yak-24. 
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Figure  3 . -  UH-60 Black Hawk. 

F igu re  4.- AH-64 Apache. 
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Figure 5.- Trend of helicopter vibration levels.
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Figure 6.- Impact of vibrations on helicopter development.
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Figure 8.- The helicopter as might be viewed by a dynamicist.
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Figure 9,- NASTRAN finite-element model of OH-58A helicopter. (From ref. 27.)

°

Figure 10.- NASTRAN finite-element model of OH-6A helicopter. (From ref. 28.)
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Figure 11.- NASA CH-53 Civil Helicopter Research Aircraft  showing NASTRAN 
model w i t h  dynamic degrees of freedom indicated and correlation for  the 
f i r s t  vertical  bending mode. (From ref .  31.) 
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Figure 12.- Rotor Systems Research Aircraft  (RSRA)  i n  compound configuration 
and assmia ted  NASTRAN model. (Courtesy S i  korsky Aircraft .  ) 
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ACTUAL HELICOPTER 
AIRFRAME STRUCTURE 

(SKINS REMOVED) 

NASTRAN 
F I N I T E  ELEMENT MODEL 

Figure 13.- AH-1G helicopter showing airframe s t ructure  w i t h  skins removed 
and NASTRAN f in i  te-el ement model. (From re f .  33. ) 

132 
ORIGINAL PAGE IS 
OF POOR QUALITY 



fl 

Ac tua l  S t r u c t u r e  f o r  Reference 
( A f t  fuse lage shown shaded) 
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V i e r  looking a f f  

F i  n i  t e - E l  ement Model o f  A f t  Fusel age 

Bul khead De ta i  1 

F i g u r e  14.- T y p i c a l  sketches used i n  d e s c r i p t i o n  o f  AH-1G NASTRAN model. 
(From r e f .  33.) 
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Figure 15.- Comparisons of frequency response results for AH-IG.
(From ref. 34.)
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CH-470 PRIMARY FUSELAGE STRUCTURE 

/ 
BULKHEAD 

STATIC MODELING 

CH-47D NASTRAN STRUCTURAL MOOEL 

Figure 16.- CH-47D he1 icopter showing primary fuselage structure and NASTRAN 
f i  n i  te-el ement model . (From ref .  41. ) 
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Figure 17.- CH-47D static and mass modeling guides for a typical frame.
(From ref. 41.)
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SUGGESTEDIMPROVErIENTS

EFFECTOF VARIATIONIN MODALDAMPING
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Figure 19.- Effect of variation in modal damping used in analysis on
correlation for CH-47D. (From ref. 42.)
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MODEL S T A T I S T I C S  
1K35 GRID POINTS 
t661 LLEllENTS 
951 flflS.8 ITERS 
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E72 BAR 
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2 0 4 1  ROD 
1 3 0 2  SHEAR 

80 T R I A 3  
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Figure 20. - AH-64A he1 i copter, NASTRAN f i n i  te-el ement model and typical 
(From d r a f t  f i n a l  report submitted frequency response comparisons. 

under DAMVIBS program. ) 

139 



UH-60A NASTRAN MODEL 
STATICS MODEL 

NASTRAN MODEL 
4,341 GRID POINTS 
8756 STRUCTURAL ELEMENTS 

MRH VERT EXCITATION 
RESPONSE LOCATION : MRH 

ACCELERATION VECTOR 

ANALISIS . _ _  - TEST 
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Figure 21.- UH-GOA helicopter, NASTRAN finite-element model and typical 
(From draft final report submitted frequency response comparisons. 

under DAMV I BS program. ) 
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FREQUENCY RESPONSE COMPARISONS EXAMPLE 

I ,  . I  1 . . I  . '  , ' 0.0000001 o i Ib 16 20 ?b 
rr(luD(0I nul ' 0  8 10 I 6  20 2b 

-0I nu) 
PILOT SEAT VERTICAL RESPONSE PILOT SEAT LATERAL RESPONSE 

TO HUB LATERAL EXCITATION TO HUB VERTICAL EXCITATION 

NASTRAN FINITE ELEMENT MODEL (FEM) 

I 

CQUAD4 1387 

\ ICRTIA3 182 I 

F i  gure 22. - D292 (ACAP) he1 i copter, NASTRAN f i n i  te-el ement model and typical 
(From d ra f t  f inal  report submitted under frequency response comparisons. 

DAMV I BS program. ) 
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la47 STRUCTURAL NODES 

208Q STRUCTURAL ELEMENTS 

Figure 23.- NASTRAN finite-element model of Model 360 composite airframe and 
airframe during ground vibration test. 
under DAMVIBS program. ) 

(From draft final report submitted 
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Figure 25.- OH-58A helicopter and EAL finite-element model o f  composite 
tail boom. (From ref. 47) 
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NASTRAN FINITE ELEMENT MODEL 
IM6/R6376 COMPOSITE DSPAR 

\ '. . __. 
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Figure 26. - NASTRAN f i  ni te-el ement model s o f  composite model ro tor  blades. 
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Figure 27.- A simplified view of rotor-airframe interaction in producing vibrations.

146



Normalized

3/rev vibration

Right side

Test

/D
[Z_\ _ _ Analysis /_T#0

Forward Aft

Fuselage station

Normalized

3/rev vibration

Left side

',\
Anal,sis

Forward Aft

Fuselage station

Figure 28.- Correlation of flight test data with a coupled rotor-airframe

analysis for 3/rev vibration of a three-bladed tandem-rotor helicopter

in high-speed level flight. (From ref. 60.)
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Figure 31.- Comparison of computed and measured hub vibrations for a helicopter 
with a four-bladed hingeless rotor. (From ref. 63.) 
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Figure 40.- Panel on Optimal Design held at 39th Annual National Forum of the
American Helicopter Society. (From ref. 94.)
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Figure 46.- Simple Pendulum Absorber. 
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Figure 47.- Response of Blade Mounted Pendulum Absorber. 
(From ref. 126.) 
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Figure 52.- Three-Dimensional DAVI. (From ref. 131.)
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Figure 56.- BO-105 IRIS Installation. (From ref. 137.)
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Figure 57.- Pinned-Pinned LIVE Unit. (From ref. 139.)
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Figure 58.- Total Rotor Isolation System Aircraft and LIVE 
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Figure 64.- OH-6A HHC Flight Test Results. 
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Figure 68.- AH-1G shake test configuration. 
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Figure 69.- Frequency response measurement of complex mode. 
(From ref. 168.) 
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Left rolling pullout at a gross weight of 8465 pounds.

Figure 73.- AH-IG Force Determination results. (From ref. 205.)
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and

Wayne R. Mantay
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ABSTRACT

The research accomplished in the area of rotor loads over the last 13 to

14 years is reviewed. The start of the period examined is defined by the 1973 AGARD

Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of

the review is research performed by the U.S. Army and NASA at their laboratories,

and/or by the industry under government contract. Important independent work is

included in the review to keep an appropriate perspective on the field. For the

purpose of this review, two main topics are addressed: rotor loads prediction and

means of rotor loads reduction. A limited discussion of research in gust loads and

maneuver loads is included. In the area of rotor loads predictions, the major

problem areas are reviewed including dynamic stall, wake induced flows, blade tip

effects, fuselage induced effects, blade structural modeling, hub impedance, and

solution methods. It is concluded that the capability to predict rotor loads has

not significantly improved in the time frame of the paper. Future progress will

require more extensive correlation of measurements and predictions to better under-

stand the causes of the problems, and a recognition that differences between theory

and measurement have multiple sources, yet must be treated as a whole.

The development of comprehensive models for rotor loads must be the first

priority of the government, but this development should be the responsibility of the

government laboratories instead of their contractors. There is a need for high-

quality data to support future research in rotor loads, but the resulting data base

must not be seen as an end it Ltself. It will be useful only if it .s integrated

into firm long-range plans for use of the data.

Research in reducing rotor ]oads has sometimes been successful in the time

frame of this paper, but the reasons have not always been understood. This research

area should be productive in the future The major emphasis should be placed on

understanding the fundamental mechan]sms of vibration, and this should be accompa-

nied by careful experimentation.

Presented at NASA/Army Rotorcraft Technology Conference, March 14-16, 1987,
NASA Ames Research Center.
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INTRODUCTION

"Instead of running into unexpectedly high loads almost every-

where the first time the full flight envelope is explored, we

now only run into them occasionally, at some extreme flight

condition." - Loewy, 1973

Rotor Loads Problem

The rotor of a vehicle in trimmed flight provides the necessary lift and pro-

pulsive force to sustain flight. The aerodynamic loads on the rotor will cause the

blade to deform which will induce additional aeroelastic loads and deflections, and

will affect the trim of the rotorcraft. The motions and deformations of the indi-

vidual rotor blades will combine to impart shears and moments at the rotor hub. In

turn, the fuselage will respond to these shears and moments, and modify the blade

airloads and stresses. The complete problem of the loads and stresses on a helicop-

ter is very complex; however, substantial progress has been made in the past by

reducing the problem into smaller pieces. The aerodynamics of the rotor and its

associated performance in forward flight can be understood to a substantial degree

without considering the elastic deformation of the blades. In turn, the distribu-

tion of moments and stresses in the rotor blade and control system can normally be

treated without considering the impedance of the rotor hub. And, lastly, the prob-

lem of the treatment of vibration within the fuselage can be approached even when

the vibratory source in the rotor is not well understood. These three divisions--

aerodynamics, rotor loads, and fuselage vibration--are useful in the design and

analysis of a flight vehicle, but, to a degree, such divisions remain arbitrary.

The scope of the present paper is the second division, rotor loads. For the purpose

of this paper, rotor loads is meant to include both the aerodynamic loading of the

rotor and its structural response.

The loads on a rotor include both a steady component and an oscillatory compo-

nent that appears at harmonics of the rotor rotational frequency; that is, I/rev,

2/rev, and so forth. The oscillatory component is sometimes referred to in the

literature as the alternating load or half peak-to-peak load, but for this paper,

the term oscillatory will be used to describe loads that have had the steady or mean

value removed. In general, the rotor loads are dominated by the steady component

and the first one or two harmonics. These are the loads that generally determine

the fatigue life of the blade and controls, and are the primary interest of the

rotor designer. At harmonics above the second, the loads become progressively

smaller and often have little influence on the rotor structural design. However, it

is these higher harmonic loads that are the source of vibration in the fuselage and

their understanding is fundamental for progress in rotor loads predictive capabil-

ity. For the purposes of this paper, the loads at the third harmonic and above will

be termed the vibratory loads.
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The characteristic behavior of rotor loads with increasing harmonic is illus-

trated in figure I using data obtained on a CH-34 rotor tested in the Ames 40-

by 80-Foot Wind Tunnel (ref. I). In this example, the airload at r/R = 0.85 is

largest in the first and second harmonics and decreases quite rapidly as the har-

monic number is increased. The flap and chord bending moments measured at

r/R = 0.375 also decrease with the harmonic number, but show the influence of the

blade elastic modes. This is particularly clear in this example for the chord

bending moment, where the second chord mode is between 3 and 4/rev and the third

chord mode is near 8/rev. In terms of blade design, what is of most interest is the

fatigue loading and this is a function of the steady loads (which are not shown

here) and the oscillatory loads, which in this case, are largely dominated by the

first and second harmonics. In terms of vibratory loading, what is of most interest

is the 3, 4, and 5/rev shears at the hub for this four-bladed rotor. The size of

the steady component and first two harmonics of the rotor loads is such that it

generally masks the behavior of the vibratory loads. Unfortunately, the vibratory

loads are rarely shown by themselves and this has acted as an impediment to improved

understanding.

Status of Technology in 1970s

The status of rotor loads prediction methodology in the early 1970s is best

evaluated through two significant events. In March 1973 a "Specialists Meeting on

Helicopter Rotor Loads Prediction Methods" was held in Milan under AGARD sponsorship

(AGARD CP 122} and was attended by most of the major helicopter manufacturers who

presented examples of correlation between their flight test data and their analyti-

cal methods. These same prediction methods were used again in February 1974 to

predict the loads of a hypothetical helicopter rotor at the Specialists' Meeting on

Rotorcraft Dynamics sponsored by NASA Ames Research Center and the American Helicop-

ter Society (ref. 2).

Examples of correlation with flight test data from the Milan AGARD meeting are

shown in figures 2 to 4 (refs. 3, 4, and 5, respectively}. The predictions of the

Boeing Vertol C-60 analysis (ref. 3) show quite good agreement for the pitch link

waveform for the aft rotor of a CH-47C aircraft under stall conditions. The agree-

ment for the oscillatory flap bending moment is not as good and it is not clear that

the nonuniform downwash model is better than the uniform downwash model. Calcula-

tions using the Sikorsky Normal Modes Analysis, Y200, for an articulated single

rotor show that a constant inflow model gives nearly the same results for oscilla-

tory loads as the variable inflow model. However, when compared on a time-history

basis, the variable inflow model shows better agreement with higher harmonics. On

the basis of oscillatory loads, correlation of C81 with data from UH-ID flight test

is quite good.

In his assessment of the prediction technology shown at the Milan meeting,

Piziali expressed his belief that advances in the previous decade had been primarily

in the scope of predictive capability and not accuracy (ref. 6}. He felt that the

structural problem was in hand, but that the analyses were limited by the
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aerodynamic model. This view was not shared by other observers at the Milan meet-

ing. Loewy, in his meeting summary (ref. 7), said that the major development prob-

lems of the previous decade had been in the area of structural dynamics. He also

felt that major progress had been made in the predictive analyses, particularly in

reducing the potential for surprises in new designs.

The importance of the 1974 hypothetical rotor comparison of Ormiston (ref. 2)

was that it provided a test of the various comprehensive models for one hypothetical

rotor configuration. Figure 5 shows that even for identical blade properties, the

rotating natural frequencies calculated in a vacuum with the different math models

showed significant differences. The range of variation for the oscillatory blade

moments is shown in figure 6 (taken from ref. 8) and shows that the various analyses

disagreed widely, especially for the torsional behavior. As a result of the compar-

ison, it was apparent that there were significant problems in one or more of the

competing analyses, but as there was no experimental data with which to compare,

there was no obvious "right" or "wrong" answer. Ormiston's recommendations for

future research were:

I. Continue to make standardized comparisons.

2. Assess in detail the assumptions and semi-empirical factors used in the

analyses.

3. Perform fundamental experimental research in the areas of dynamic stall,

blade/vortex interaction, and three-dimensional flow effects.

4. Compare the prediction methods (after some progress with items 2 and 3

above) with experimental data from the test of a full-scale rotor in a wind tunnel.

Survey Articles

In the years since the Milan AGARD meeting and the hypothetical rotor compari-

son of Ormiston, there have been a number of assessments of rotor loads prediction

methodology. Arcidiacono and Sopher examined the United States progress in rotor

loads predictive capabilities at the AGARD conference on the "Prediction of Aerody-

namic Loads on Rotorcraft" held in London in 1982 (ref. 8). They concluded that a

good deal of fundamental work had been done with regard to dynamic stall, blade/

vortex interaction, and three-dimensional flow effects. In addition, they felt that

the modeling of the structure had improved, both in terms of the physics of repre-

senting the rotor blade and in the design of structured computer programs. However,

it was unclear at what point these analytical advances would be integrated into

analyses. They noted that the older analyses were not easily modifiable without a

substantial investment of time and money. They expressed optimism that with the

development of the Second Generation Comprehensive Helicopter Analysis System

(2GCHAS), these advances could be introduced in a controlled and efficient manner.

Johnson assessed the state of rotor loads prediction in a survey paper that

covered the entire area of rotorcraft dynamics (ref. 9). He compared predictions
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made at the 1973 Milan meeting with more recent calculations shown in the litera-

ture, and pointed out that, in general, the analyses are able to calculate the mean

and oscillatory loads; but, that an examination of the time histories reveals that

the fundamental phenomena are not being modeled correctly.

Friedmann addressed advances in rotorcraft aeroelasticity in a number of survey

articles (refs. 10 and 11) and, although these do not deal with the predictive

capabilties of the rotor loads analyses, they do provide useful summaries of

advances in structural modeling and dynamic stall.

Johnson also provides a detailed survey of recent developments in rotary-wing

aerodynamic theory (ref. 12). The survey pays particular attention to efforts in

lifting surface theory, panel methods, transonic theory, and transonic blade-vortex

interaction analyses. In his treatment, he makes a number of useful comparisons to

the equivalent fixed-wing formulations. He concludes that lifting-line theory will

remain the basis for rotor-aerodynamic calculations as long as it is the only theory

that can accurately include viscous effects. He feels that work should continue

toward the goal of turbulent Navier-Stokes calculations for the entire aircraft

although there is no immediate expectation of success in this area.

A restricted class of survey articles (nonetheless very useful), are papers

that summarize the application of rotor loads technology within a company. Gabel

(ref. 3) has provided a useful discussion of how the rotor loads analyses are used

at Boeing Vertol, and Yen and Glass (ref. 13) have done the same for Bell Helicopter

Textron and included a historical perspective as well. Dadone (ref. 14) has dis-

cussed the application of the aerodynamics technology to the rotor design and has

shown how it has evolved over the years at Boeing Vertol. Landgrebe (ref. 15) has

discussed the evolution of the rotor-wake geometry representation at the United

Technologies Research Center (UTRC) and at Sikorsky.

Organization of Paper

This review of rotor loads research is divided into two main sections:

research into understanding and improving the capability to predict rotor loads, and

research into means of reducing rotor loads. Within the first section, the discus-

sion is organized by breaking the loads problem into the aerodynamics model, the

structural model, and solution methods. Within the section on rotor loads reduction,

the major topics are investigations into effects of blade tailoring, control of

blade loads through kinematic coupling or control system design, and aerodynamic

tuning devices. Following these main sections, rotor loads in the presence of gusts

and maneuvers is discussed. In the concluding part of the paper, an assessment is

made of the progress that has occurred in the rotor loads area in the last 15 years.

The role of the U.S. Army and NASA in this process is discussed and some conclusions

and recommendations are made as to the major emphasis that should be taken in the

years to come.
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Two Themes

Two themes will appear and reappear in this paper. The first of these themes

deals with the balance between analysis and synthesis, and the second deals with the

question of whether progress in controlling rotor loads can be made without under-

standing the basic mechanisms. The place of analysis in rotor loads research is

well established, especially in the goverment laboratories and academia. This

process of analysis, the breaking down of a problem into its constituent parts,

examining each part in detail, and performing theoretical work and experiment to

obtain improved understanding, has often been repeated. But, the process of putting

the various pieces together again (which is referred to here as synthesis}, is not

so easy. To take the improved understanding, and to put the constituent parts back

together again and understand their interrelationships, is not done well nor is it

done often. When it is done, it is usually within the industry where the need is

imperative. The balance between analysis and synthesis is the first of these

themes.

The ultimate objective of research in rotor loads is not just the understanding

of the fundamental mechanisms involved, but rather to be able to design improved

rotor systems. The problem of rotor loads prediction is so intractable that to

progress in this area, it is necessary to pursue not just the basic research into

rotor loads, but to also pursue research in loads reduction even if the mechanisms

to be used are only guessed at. A great deal of effort has been placed on experi-

mentation in recent years--to parametrically vary major rotor properties and to

measure the resulting improvement. This research has often been guided by a sub-

stantial amount of careful thought and the results have provided insight into the

rotor loads mechanisms. The reduction of rotor loads through feedback control is

the ultimate extension of this approach. But it must be recognized that the control

of rotor loads, either through empiricism or feedback, is a complementary approach;

it is not a substitute for research into the mechanisms of rotor loads. This is the

second theme, the balance between reducing the rotor loads and understanding the

physics.
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ROTOR LOADS PREDICTION

"For a good prediction of loads it is necessary to do everything

right, all of the time. With current technology it is possible

to do some of the things right, some of the time." - Johnson,

1985

Comparisons of measured rotor loads and prediction methods normally show both

areas of agreement and places where things are not right. A number of approaches

are made to understand the sources of disagreement and these can be generally cate-

gorized as: (I) fundamental investigations of the physics, (2) theoretical and

experimental tests of simplified models, and (3) theoretical and experimental tests

of the complete model, that is, of the rotor itself. Examples of all three of these

approaches will be shown in this section.

For the purposes of this review, research into rotor loads prediction will be

broken down into the aerodynamics model, the structural model, and solution meth-

ods. The aerodynamics model will be further broken down into dynamic stall, the

wake-induced flow, blade-tip effects, and fuselage effects. The structural model

discussion will include topics involving the blade structural properties and the

influence of the fuselage impedance.

Dynamic Stall

The work of McCroskey and Fisher (ref. 16) with a model rotor that had pressure

transducers installed at r/R = 0.75 and skin friction gages to characterize the

boundary layer behavior, provided a clear description of the sequence of events

involved in the dynamic stall of a rotor over the inboard section of the blade. To

properly model the dynamic stall process, it is necessary to account for the lift

overshoot and the large pitching moment changes that are related to the vortex that

is shed from the blade leading edge. Johnson (ref. 17) used the Sikorsky Y2OO

analysis to test three of the early empirical models: the _, A, B Method developed

at UTRC (refs. 18 and 19); the MIT Method (refs. 20 and 21), and the Boeing Vertol

Method (ref. 22). The elastic torsion angle for a highly loaded rotor at

= 0.333 calculated with these models is shown in figure 7. As only one torsion

mode was used, the blade-torsion moment is directly proportional to the elastic

deflection. Even though the blade dynamics are identical for the three models, the

predicted torsion behavior shows significant differences, particularly in the third

and fourth quadrants of the rotor.

Sikorsky derived a simplified dynamic-stall model based on a universal nondi-

mensional time constant, • = UoAt/c, where At describes the start of a stall event

determined from two-dimensional (2-D) measurements, Uo is the free-stream velocity,

and c the chord length (ref. 23). They tested the predictive capability of this

time delay model and the _, A, B Method by comparing first with a simplified

experiment, and second with flight-test data (refs. 23 and 24). The simplified
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experiment was a test of a 2-D airfoil mounted on a torsion spring and oscillated in

and out of stall at I/rev. The torsion spring was sized to provide an appropriate

torsional natural frequency with respect to the I/rev of the primary oscillation and

in this way to simulate stall flutter. These 2-D model tests were representative of

full-scale, 3-D tests in ways that were not anticipated, including considerable

cycle-to-cycle variation and unresolved ambiguities when the measurements were com-

pared to theory. The time delay method tended to overpredict the 2-D test results

and underpredict the 3-D, full-scale test results. Pitch-link loads predicted with

the Y200 analysis using the two methods are compared with flight-test data in fig-

ure 8. The test data show that the blade stalls at an azimuth of about 190 ° , and

this is not shown by the calculation. The _, A, B Method predicts some stall on

the second stall cycle at about 250 ° while both methods show substantial stall on

the third stall cycle. The _, A, B Method shows better agreement in terms of

amplitude of the pitch link oscillation.

All of the dynamic stall models are empirically derived from experimental data,

normally 2-D wind tunnel tests of oscillating airfoils. McCroskey (ref. 25) used

data from an NACA 0012 airfoil tested in the U.S. Army's 7- by 10-Foot Wind Tunnel

at Ames (ref. 26) to test the predictions of five empirical dynamic stall models.

In addition to the three models that had been examined previously by Johnson, he

also included two time delay methods (refs. 23 and 27) and a method derived by

Lockheed (ref. 28). The methods were evaluated for their ability to predict the

phase angles of lift and moment stall, and maximum values of the normal force and

pitching moment coefficients. No single method was notably better than the others,

and each was deficient in some area of prediction.

A new empirical model for dynamic stall that has been developed and integrated

into the Sikorsky analyses is reported by Gangwani (refs. 29-31). As in the _, A, B

Method, this model uses the angle of attack and pitch rate as major parameters, but

the angle of attack acceleration term, B, is replaced with a parameter that accounts

for the time-history effects of changes in angle of attack and is based on the

Wagner function. Lift, pitching moment, and drag are all determined as functions of

these parameters where the functional behavior is determined from a least squares

fit of 2-D oscillating airfoil data. The comparison of this empirical model and

available 2-D oscillating airfoil data (ref. 30) is more extensive than for any of

the other dynamic stall models. However, only limited comparisons with flight test

data are shown. Gangwani (ref. 32) has also integrated this empirical model into a

rotor loads analysis based on a model developed at Rochester Applied Science Associ-

ates (RASA) and described in reference 33, and has compared the results with data

obtained from flight test of an AH-IG (ref. 34). The use of the synthesized-stall

data does not improve the flap or chord bending moment correlation, but does show an

improvement in the modeling of the torsion moment.

There have been no direct comparisons of the various dynamic stall models since

Johnson (ref. 17), nor are there any extensive comparisons between any of these

models and flight test data published in the literature. Future comparisons should

include the ONERA dynamic stall model (ref. 35) with the extensions recommended by

Peters (ref. 36). Any extensive correlation with flight test data may have to model

187



the fuselage induced flow as well. As shown by Wilby et al. (ref. 37) the upwash

from the fuselage may increase the blade angle of attack sufficiently to cause stall

over the nose of the aircraft. The stall-induced pitch-link load that is seen in

figure 8 at a blade azimuth of about 190 ° for the CH-53A may be a result of this

phenomenon.

The dynamic stall models in use today are empirically based on 2-D airfoil

data. Near the blade tip, the blade stalling process will be 3-D and in some situa-

tions, the interaction of a previous blade's vortex will also induce a 3-D form of

stall. Brotherhood and Riley (ref. 38) show the rotor blade of a Wessex helicopter

in two different kinds of stall as visualized by pressure transducers mounted in the

blade's leading edge. The pressure time histories are shown in figure 9 as a func-

tion of the blade azimuth. The first stall event appears at r/R = 0.90 and is

seen to move outboard. This event corresponds to the passage of the previous

blade's vortex across the tip of the blade. The flow reattaches after the passage

of the vortex, and then a second stall event is seen on the three outer blade sta-

tions, but this time the stall is simultaneous. How such complicated events can be

modeled (or even if they need to be) is unclear. One useful approach has been taken

by Costes (ref. 39) who has made experimental measurements on an oscillating half-

span airfoil and compared the unsteady pressure measurements to calculations which

were based on an extension of the ONERA dynamic stall model to three-dimensions. It

appears that the blade lift can be estimated satisfactorily with this model, but the

pitching moment cannot. This problem will become more important as variation in tip

planform is used more frequently in the design of new rotors.

Wake-lnduced Flow

In his seminal paper (ref. 40) Hooper has examined seven sets of airload mea-

surements made on full-scale rotors using Cartesian, 3-D plots to visualize the data

obtained in flight or wind tunnel tests. He has demonstrated that the low-speed (or

transition) flight regime vibratory airloading is dominated by the interaction of

the blade and the preceding blade's tip vortex first on the advancing side of the

disk and then on the retreating side. This behavior is seen regardless of rotor

type or blade number. At higher speeds, it appears that the greatest part of the

vibratory airloads is caused by events on the advancing side of the disk, but in

this case, there appear to be substantial differences which are due to rotor type or

blade number. The low-speed or transition case will be discussed first as this has

drawn the most attention of investigators in the past. The high-speed vibratory

loading will be discussed at the end of this section on wake-induced flow.

An example of the low-speed vibratory loading is shown in figure 10 in the

manner of Hooper using the data of reference 41. On the advancing side of the disk,

there is a down-up pulse in the airload as the blade passes first through the down-

wash, and then the upwash, of the preceding blade's tip vortex as that vortex moves

inward on the blade. On the retreating side, there is an up-down pulse as that same

vortex moves radially outward on the blade. To properly calculate the wake induced
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airload, it is necessary to correctly model the wake geometry, the vortex strength,

and the blade-vortex interaction.

The advent of the digital computer has made feasible the calculation of the

induced flow including the effects of a realistic wake representation. By the start

of the time period covered in this paper, the use of a prescribed wake, that is, a

wake where the tip and root vortices are assumed to follow a prescribed helical

pattern, was well established. In addition, calculations using a free wake, where

the wake geometry is modified by self-induced effects, had been developed and

applied to a number of problems (refs. 15 and 42).

The free-wake calculations have shown that distortions of the wake geometry are

primarily in the vertical or axial direction. In the plane of the rotor disk, the

wake geometry lies very close to the cycloidal pattern of the prescribed wake. This

has been shown from flight testing of pressure-instrumented rotors where the vortex

passage can be identified from the characteristic up-down or down-up pulse in the

measured pressure. Measurements obtained using a Puma helicopter (ref. 43) are

compared with the cycloidal geometry in figure 11 and show little distortion in the

disk plane from advance ratios of O.11 to 0.35. Landgrebe and Bellinger (ref. 44)

have compared their free-wake calculation to the measured axial geometries obtained

by Lehman in a water tunnel (ref. 45) and have achieved good results. Johnson

(ref. 46) has compared a free-wake analysis to the laser-velocimeter measurements of

the wake geometry of a two-bladed rotor in a wind tunnel which were obtained by

Biggers et al. (ref. 47) and has also demonstrated good agreement. However, he

notes that in this case, the tip-path plane angle of attack was sufficiently large

so that the difference in axial-wake position predicted with either the prescribed

or free wake had no effect on the blade loading.

The predictions of wake geometry using free-wake analyses appear good in those

cases where data are available, but the predictions of the airloads and blade bend-

ing moments have not been done as well. Egolf and Landgrebe (ref. 48, summarized in

ref. 49) and Yamauchi et al. (ref. 50) have compared the analytical predictions of a

rotor loads analysis that includes a free-wake model with measurements of blade

airloads and structural loads obtained in flight. Figure 12 compares the blade

airloads measured on the CH-34 rotor at the 0.90R radial station (the same case as

was shown in fig. I0} with predictions using both prescribed and free-wake analyses

(ref. 48). The data show the influence of the blade-vortex intersections on the

advancing and retreating sides of the disk. The prescribed-wake calculation shows

similar behavior, but the load is much reduced in strength. The free-wake calcula-

tion shows multiple tip-vortex intersections (that is, intersections with two or

more tip vortices from the preceding blades), but these are not apparent in the test

data. The analysis predicts very high blade airloads due to the initial intersec-

tion, much higher than those measured in the test, as these calculations show a

direct intersection of the tip vortex and the blade. The resulting blade flap

bending moments using the free-wake analysis, coupled to the Sikorsky Y200 rotor

loads program, are shown in figure 13. The airload peak seen in figure 12 is highly

localized so its impact on blade loading is not severe. Both the theoretical pre-

diction and the measured loads are rich in higher harmonics, but except for the
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loading at about 270 ° azimuth, the agreement in amplitude and phase is not particu-

larly good.

Yamauchi et al. (ref. 50) compare predictions using the prescribed and free-

wake analyses of CAMRAD with flight-test data for the Aerospatiale SA 349-2. Air-

loads data for this test program were obtained at r/R = 0.75, 0.88, and 0.97. The

CAMRAD predictions for lift coefficient are compared in figure 14 with the measure-

ments _de at 0.88R and an advance ratio of 0.14. As with the CH-34 results, the

data show loads caused by the blade vortex interaction on both the advancing and

retreating sides of the disk and the free wake provides a better prediction of the

loading induced by the vortex wake. Again, as with the CH-34 case, the theoretical

predictions show multiple vortex intersections that are not apparent in the data.

The core size used in the CAMRAD free-wake prediction shown here has been determined

after an a posteriori fitting of the data. Calculation of the flap bending moments

for the SA 349-2 using the free-wake analysis show mixed results with good agreement

at the blade midspan, but poor agreement elsewhere.

The influence of blade vortices at high speed is not as clear as for the low-

speed transition case. Figure 15 shows the vibratory loading measured on the CH-34

rotor in the 40- by 80-Foot Wind Tunnel at an advance ratio of 0.39 (refs. I

and 51). A strong, impulsive loading is seen on the advancing side of the disk, but

unlike the low-speed case, the load is an up-down pulse, suggesting that the blade

is encountering first an upwash and then a downwash. Miller (ref. 52) has proposed

that, because the outer portion of the blade is negatively loaded for this case,

that two vortices of opposite sign are trailed from the blade as shown in figure 16.

An analysis of this case made using a number of simplifying assumptions, including

fixing the position of the midspan or inboard vortex, shows good agreement with the

measurements as shown in figure 17. This progress is encouraging, as Hooper has

shown in reference 40 that neither the Boeing Vertol C-60 analysis nor CAMRAD show

satisfactory agreement for this case. (However, note that Phelan and Tarzanin,

ref. 53, have reported corre@ting a programming error in C-60 and now show much

better agreement for the airloads in this case.)

The importance of the blade-vortex interaction studied in the CH-34 high-speed

case is not entirely clear since it appears to be strongly related to the amount of

negative lift on the advancing side of the disk. The CH-34 which was studied in the

40- by 80-Foot Wind Tunnel was operated at reduced lift (about 60-70% of the lift

for normal flight), and data on the XH-51A and NH-3A compound aircraft studied by

Hooper were obtained with some of the lift provided by the aircraft wing. Unfortu-

nately, there are few high-speed data available for conventional rotors. The

maximum speed case studied for the CH-53A aircraft was an advance ratio of 0.32 and

the vibratory loading is quite different from that seen in figure 15. Measurements

made on the outer blade stations of the SA 349-2 at an advance ratio of 0.38 do not

show any clear evidence of vortex-induced loads (ref. 54). However, model-scale

data acquired on the Boeing Vertol Model 360 rotor (ref. 55), show airloads that are

remarkably similar to the CH-34 airloads as shown in figure 18.

Application of free-wake calculation techniques to rotor loads requires first,

that the physics of the phenomena be correctly modeled and second, that the wake



calculations be efficiently integrated into the rotor loads calculation. It seems
evident from the research with the free-wake models that the first step has not yet
been achieved. It is not possible at this time to accurately model the free wake.
However, someprogress has been made in making the calculation more efficient.
Egolf and Landgrebe (ref. 48} have approached this problem for their free-wake
calculations by constructing an approximate or generalized model of the wake, and in
this fashion, reduced the computational time by a factor of a thousand.

Young(ref. 56) has taken a different approach to the problem of an efficient
wake calculation by starting with a simplified wake model that is very efficient and
then modifying it step-by-step to see how much improvement is obtained and at what
cost in computation time. Youngmodels the near wake with rigid semicircles of
constant vorticity whoseradius varies as the blade movesaround the azimuth, and
the far wake as a series of yortex rings. As vortex rings will not give the same
blade vortex intersection as a cycloidal path, the actual intersection geometry is
used to fix the outer position of the wake vortex rings. Figure 19 compares the
flap bending momentsmeasuredon a Pumawith the original vortex ring model, and the
vortex ring model with the improvements discussed by Young in reference 56. The
representation of the higher harmonic loads appears reasonably accurate in both
amplitude and phase.

Alternative approaches to the calculation of aerodynamic loading have been
devised using the acceleration potential. Costes has demonstrated the feasibility
of this method and comparedhis results to rotor measurementsobtained in a wind
tunnel (ref. 57). Runyanand Tai (ref. 58) have developed a similar approach and
madelimited comparisons with model rotor loads measurements. Pierce and
Vaidyanathan (ref. 59) have applied the method of Van Holten (ref. 60) to the pre-
diction of the airloads measuredon the CH-34 in flight and in the wind tunnel. In
general, the prediction of the oscillatory loads is good, but the prediction of
harmonics beyond two is difficult to judge as they are masked by the first and
second harmonics.

Blade-Tip Effects

The calculation of rotor loads based on lifting-line theory normally accounts
for the reduction of lift at the blade tip by introducing a tip-loss factor for the
blade normal force, but the chordwise force is assumedto extend to the blade tip.
Whenthe wake-induced flow is calculated by a prescribed or free wake then the
radial distribution of bound vorticity is determined as part of the solution.
Johnson (ref. 46} has compared the calculated bound vorticity using a free-wake
analysis to measurementsobtained with a laser velocimeter on a model rotor in a
wind tunnel (ref. 47) and these show fairly good agreement, particularly near the
tip. This comparison was madeat an advance ratio of O.18 and it is expected that
the calculation problem will becomemore difficult at higher speeds as transonic
effects begin to dominate the loading.

A great deal of progress has been madein recent years in developing finite
difference codes to analyse the flow over an advancing blade including the effects
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of shocks and unsteadiness. Caradonna and Tung (ref. 61) have provided a comprehen-

sive discussion of the present status of these codes and have compared a number of

the code predictions with surface pressures measured in nonlifting and lifting rotor

experiments. At the present time, the codes are being integrated into comprehensive

analyses either in a partially coupled manner (ref. 62) or as a post-processor

(ref. 55). In the former case, the comprehensive analysis (CAMRAD in ref. 62) is

used to obtain the trim solution and then to provide the finite-difference code with

a partial inflow distribution along the blade. The calculated inflow from the

comprehensive analysis excludes the influence of the trailing vortex sheet that is

calculated as a part of the finite difference grid. The finite difference program,

in turn, provides the comprehensive analysis with an improved estimat e of the blade

lift. The solutions are matched when there is no change in lift from one iteration

to the next. The blade pitching moment and drag are not coupled in this manner, and

spanwise discontinuities in calculated properties are allowed at the grid inner

boundary. There is great optimism as to the utility of these new methods, but the

applications are in their infancy.

Fuselage Flow Effects

The U.S. Army developed four prototype aircraft in the early 197Os to meet the

needs of their utility and attack helicopter missions. All of these prototypes

encountered severe vibration problems, and in each case, the rotor shaft was

extended; as a consequence, the vibration was reduced. There was a great deal of

intense activity at that time to understand the problem, but because of the competi-

tive aspects of the developments little information was published. (An account of

some of these problems was given by Gabel in a panel at the 2nd Decennial Special-

ists' Meeting on Rotorcraft Dynamics held at Ames in 1984, ref. 63.)

The effect of a fuselage on the air flow during flight will be to cause an

upwash on the forward side of the disk and a downwash on the rearward side. This

will cause a I/rev variation in the induced flow at the rotor disk and will affect

the rotor loads. The rotor wake may also impinge on the fuselage and cause vibra-

tory excitations. Wilby et al. (ref. 37) have presented results from model tests

with and without a fuselage. The flap bending moments measured at an advance ratio

of 0.3 are shown in figure 20 for this model. Although the fuselage causes a I/rev

variation in the induced flow, the effect on the blade is to cause an increase in

the 5/rev moments at 400 rpm and 4/rev moments at 600 rpm. In both cases, the

increased loading corresponds to the second flap mode frequency. Similar effects

are seen in experimental measurements reported by Freeman and Wilson (ref. 64).

Huber and Polz (ref. 65) have used an analytical model to examine the effect of

the fuselage aerodynamics on the blade loads. Figure 21 shows that the calculated

effect of the fuselage is to cause an upwash over the nose of the aircraft and a

downwash over the tail. The greatest effect is seen in the 2 and 3/rev loads.

Huber and Polz note that the upwash is a maximum at about 0.4R and that this corre-

sponds to the antinode of the second flapping mode and explains why the second flap

mode responds so strongly to the fuselage induced flow.
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The effect of the fuselage on full-scale rotor loads has been studied by Jepson

et al. (ref. 66} using flight test data, wind tunnel data, and calculation. Figure

22(a) shows flap bending moments measured at 0.70R on an S-76 rotor in flight and in

the Ames 40- by 80-Foot Wind Tunnel (ref. 67). Figure 22(b) shows calculations

using Y201 for the S-76 rotor alone and for the rotor with the aircraft fuselage.

The calculations show that the effect of the fuselage is to cause a significant

increase in the 3/rev flap bending moments. This same sort of increase is seen in

comparing the flight-test results with the wind tunnel measurements. In the wind

tunnel, the rotor was mounted on the Ames Rotor Test Apparatus (RTA). Calculations

in reference 66 show that the S-76 fuselage increases the angle of attack about I°

over the fuselage nose compared to the predicted effect of the RTA.

The theoretical calculations discussed above have all represented the fuselage

using potential flow-panel methods. Johnson and Yamauchi (ref. 68) have used a

modification to slender body theory to represent the fuselage and have shown that

this approach gives the same results as did a panel method for axisymmetric bodies

at zero angle of attack, but at a much lower computational cost. Typically, the use

of the modified slender body theory increases the computational run time (including

a prescribed wake) by only 10-20% with respect to an isolated rotor calculation.

Using this approach, the influence of the RTA on rotor loads has been estimated

(ref. 69) and it was shown that the flap bending moments increase by 5-10% and the

chord bending by 10-15%. The effect on pitch-link loads is negligible. The mea-

surement of rotor loads on the RTA, therefore, is a reasonable approximation of

isolated rotor conditions.

The measurements and calculations made in the last decade examining the effects

of the flow induced by the fuselage have all shown a significant effect on higher

harmonic loads. It seems clear from this perspective that testing future improve-

ments to rotor loads prediction methods will be fruitless unless the effect of the

fuselage induced flow is accounted for.

Blade Response

A substantial amount of research has been performed in the last 10-15 years to

understand the influence of the blade structural, inertial, and kinematic properties

of the rotor loads. A great deal of this research has been directed toward loads

reduction and this will be discussed in more detail below in the Rotor Loads Reduc-

tion section. The emphasis of the material covered here under the Blade Response

heading is the improved understanding of how the rotor responds to the aerodynamic

loading.

The understanding of rotor loads is greatly enhanced when the source of the

blade loads can be identified by harmonic and blade mode. In the 1973 Milan AGARD

meeting, McKenzie and Howell (ref. 70) compared the Westland rotor loads analysis

with flight-test data from the Lynx; examples are shown in figures 23 and 24. In

figure 23, the 4/rev rotor hub pitch and rolling moments are broken out by the

proportion of the moment that occurs in the first three flapping modes. As the

4/rev hub moments are the primary source of vibratory loads on the Lynx, this
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technique is valuable; first, in identifying which blade modes are most important

for vibration reduction, and second, to judge how well these loads can be predicted.

(Note that the modal contributions cannot be directly measured from flight test, but

are obtained by using the blade-bending moment data to estimate the amplitudes of

the modes as generalized coordinates. This technique has been used by other inves-

tigators (refs. 71 and 72), but none of these references discuss the technique or

its limitations in any detail. It appears that the method is similar to the formal-

ism of the Strain Pattern Analysis Method (refs. 73 and 74).) Figure 23 shows that

the second-flap mode contribution is most important for the Lynx as determined from

flight measurement, but that the theory predicts approximately equal effects from

both the second- and third-flap modes. Figure 24 compares the theory and flight-

test estimates for the second mode deflection for three harmonics of blade loading.

The I/rev deflection is overpredicted, while the 2 and 3/rev deflections are under-

predicted. This approach to comparing measurement and prediction provides a better

assessment of the rotor behavior and the validity of the prediction model than more

typical approaches that are based on the comparison of oscillatory loads or azi-

muthal waveforms.

Blackwell and Commerford (ref. 24, summarized in ref. 75) have made an exten-

sive theoretical investigation of the means of reducing stall-induced loads. One of

the advantages of the theoretical approach is that it is relatively straightforward

to break down the various components of a load to understand what is the primary

cause and what can be done to reduce its influence. In that study they calculated

that a reduction in torsion frequency would reduce the stall-induced pitch link

loads. Figure 25 shows the torsion moment at the root caused by the aerodynamic

pitch moment; the moment caused by the inertial loads; the moment caused by deflec-

tion and shear of the blade, and their sum. The plot shows one rotor revolution

starting at 180 ° to better illustrate the stall-flutter behavior. For this articu-

lated rotor, the effect of blade deflections in combination with shears has only a

small effect; the largest effect is caused by the aerodynamic pitching moment and

the inertial moment which are of opposite phase. The change in torsional frequency

does not change the aerodynamic pitching moment very much, but does reduce the

inertial load and this accounts for the calculated reduction in the root moment. It

is expected that shear/deflection loading will be much more important for hingeless

and bearingless rotor designs.

Extensive data have been obtained in the Langley Transonic Dynamics Tunnel

(TDT) on the conformable model rotors and the data show that the tip design, blade

camber, and torsional stiffness all have a substantial influence on the rotor loads

(refs. 76 and 77). These data are discussed in detail in the Rotor Loads Reduction

section, but mention is made here because the data have stimulated additional work

by Blackwell and Kottapalli to understand the reasons for the observed changes in

rotor loads.

Blackwell (ref. 72) has re-examined the data obtained in the TDT and has fitted

the measured blade bending moments with calculated modal moments to identify the

generalized coordinates. He states that the hub shears calculated in this fashion

"trended directly" with the loads measured on the rotor balance, although no results
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are shown. The major differences seen in comparing the rectangular- and swept-tip

configurations are the reductions in the 3/rev vertical shears at the hinge, and the

3 and 5/rev inplane shears at the hinge for the swept tip. The generalized coordi-

nate amplitudes show that most of this reduction is in the second flap mode.

Kottapalli (ref. 78) has taken a purely theoretical approach to better under-

stand the changes in rotor loads that were seen as the model blade-tab deflection

was changed in the TDT tests. Using the Sikorsky Y201/F389 family of programs he

shows that the reduction in 4/rev vertical root shears is related to reductions in

the blades' 4/rev angle of attack distribution. The angle of attack reduction is

calculated to be due to reductions in elastic torsion (42%), elastic flapping (39%),

and inflow (19%).

The complementary approaches of Blackwell and Kottapalli are useful in provid-

ing an improved understanding of rotor loads behavior, but both approaches have

substantial limitations. The experimental approach of Blackwell can break the

problem down to a certain level, but not to the individual terms of the equations of

motion. Relationships between different properties can be demonstrated experimen-

tally, but the cause and effect cannot necessarily be derived. The theoretical

approach, however, can break the problem down to the level of the individual terms

of the equations of motion and, in some cases, clearly demonstrate cause and effect.

However, the inability of the analysis to predict rotor loads as measured in flight

test makes the analysis untrustworthy.

Blackwell has also looked at the effects of spanwise mass distribution on

vibratory loads in reference 72. Based on a simple analytical representation, he

suggests that the distribution of spanwise mass should modify the blade-root shears

which depend upon the product of the airload distribution and the mode shape.

Taylor (ref. 79) has pursued this approach and examined the sum of the modal root

shear contributions for all blades and derived a Modal Shaping Parameter which is

defined as

MSP = (Modal Shear Integral) × (Generalized Force)
(Generalized Mass)

Taylor assumes the airload can be represented as a polynomial in the radial coordi-

nate and, once the loading is defined, that the modal shaping parameter provides a

design method to seek a reduced vibratory load. Taylor extends this approach in

reference 80. In this study he uses the G400 analysis to calculate the rotor loads

and breaks down each component into essentially the terms of the equations of

motion. Figure 26 shows an example of the calculation of 3/rev lateral shears where

each component of shear is identified in terms of amplitude and phase. As changes

are made to the blade design based on the modal shaping parameter, then the behavior

of each component of the vibratory shear can be observed, and insight into the loads

behavior obtained. This approach holds great promise once more reliable analyses

are developed as the reduction in rotor loads will be accompanied by an understand-

ing of the system behavior. This must be contrasted with the formal optimization
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approach where an understanding of the physics is not necessary to the achievement
of loads reduction.

Another approach to understanding the blade response problem has been taken by

Esculier and Bousman (ref. 81) who have calculated the blade response for the CH-34

using measured airloads. This approach avoids the question of the adequacy of the

aerodynamic model by substituting measurements, and in this way, the adequacy of the

structural model can be evaluated. Figure 27 compares the measured moments from

reference I with calculations for the first harmonic of blade loads. Two calcula-

tions are shown for the flap and chord bending moments: an uncoupled calculation

and a coupled calculation assuming the flap and chord motions are coupled through

the local pitch angle. The comparison of the flap bending moments show very good

agreement between the measurements and the calculations based on measured airloads.

This good agreement is, in general, obtained through the ninth harmonic. This means

that for relatively simple rotors such as the CH-34, the flap bending loads can be

calculated quite precisely if the aerodynamic model is correct.

This is not the case for the chord loads as neither the coupled or uncoupled

calculations accurately predict the blade chord bending moments. Two reasons for

this were identified in reference 81. First, the chord airloads are not measured

directly, but are obtained from the flap airloads, and second, the CH-34 hydraulic

damper is represented as a linear viscous damper, but the data suggest that it also

acts as a relatively strong spring. The blade torsional moments appear fairly well

predicted using the measured pitching moments, especially in phase, but as pointed

out in reference 81 the calculation of torsional moments is sensitive to the control

system stiffness and that was not measured in reference I.

The adequacy of blade structural modeling has also been assessed by testing of

rotors in a vacuum. Lee (ref. 82) measured modal frequencies and displacements of a

rotating, cantilevered UH-ID blade in a vacuum chamber and obtained good agreement

with prediction for the lower frequency modes as long as they were not strongly

coupled. The mode shape prediction was not as good for the higher frequency and

more strongly coupled modes. Srinivasan et al. (ref. 83) have made frequency and

modal strain measurements of a torsionally soft model rotor spinning in a vacuum

chamber. These measurements may become useful for validating the prediction of

structural models because of the extensive model properties documentation that have

been obtained for these blades (ref. 84).

Fuselage Impedance

Rotor loads predictions are normally made assuming the rotor is mounted to an

infinitely stiff structure. One exception to this is that Bell Helicopter Textron

models the pylon flexibility in calculating the rotor natural frequencies and mode

shapes used by the C81 analysis for their two-bladed rotor designs. Yen and McLarty

(ref. 85) have shown the importance of modeling the pylon impedance for the calcula-

tion of rotor loads, and an example for the OH-58A is shown in figure 28. The

effect of the pylon impedance on the oscillatory loads is clearly shown here and it

has also been shown by measurements in wind tunnel tests (ref. 86).
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Sopher et al. (refs. 87 and 88) have reported on the development of an analysis

that couples the Sikorsky G4OO rotor loads analysis to a fuselage model and allows

the calculation of rotor loads and vibration. These calculations showed that the

hub impedance has a large effect on the rotor loads when a rotor frequency is close

to an N/rev. However, the predicted effect was very sensitive to the fuselage

representation used and the reasons for this were not determined.

Gabel and Sankewitsch (ref. 89) have reported the development of a method to

couple the Boeing Vertol C-60 rotor loads analysis to a fuselage representation

through an impedance-matching technique. The fuselage impedance is shown to have a

significant effect on the hub vibratory loads, but the effect on blade loads is not

discussed.

Solution Methods

The modal blade representation used for the solution of the rotor equations is

usually based on a set of uncoupled or coupled rotating modes (ref. 2). In the case

of coupled modes, the calculation is made for a representative blade pitch angle and

the effects of variation in the geometric pitch angle around the azimuth are assumed

negligible. Harvey (ref. 90) has examined this assumption using a rotor model that

represents the actual pitch angle of each blade. He applied this analysis to a

simplified model of a two-bladed rotor and compared the results of calculations with

and without the cyclic variation. The effect on the blade harmonic loads is small

when the pitch bearing is at 0.25R, but large when it is located at the rotor

centerline.

Hansford (ref. 91) has also addressed this problem and has derived correction

terms for the coupled modes that depend upon the cyclic pitch. Comparison with

model and flight-test data show that the correction terms are not important for the

calculation of the flap bending moments, but are important in some cases for the

chord bending moments. Figure 29 compares flight-test measurements from the Lynx to

rotor load predictions using the conventional modal representation and a modified

theory that uses the cyclic correction terms. The modification does not appear

important at the inboard station, but does have a significant effect outboard. For

this case, it appears that the modified theory provides a better representation of

the blade loads than does the conventional modal representation.

Once the modal solution is obtained, there are alternative approaches to the

calculation of the rotor-bending moments. The normal approach is to sum the contri-

bution of all of the modes. However, where there is a discontinuity in the loading,

such as a load path split on a bearingless rotor design, then the modal-summation

approach will not accurately model the load distribution at the discontinuity.

Bielawa has examined this problem in reference 92 by comparing the modal-summation

method with a force-integration technique where the bending moment at any location

is obtained by calculating the balance of forces out to the blade tip. He shows

that the force-integration method can properly represent the rotor loading at dis-

continuities, but the method is computationally more expensive, llansford (ref. 93)

has devised a method of unifying the two approaches by deriving correction terms to
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the modal-summation method based on the force-integration expression. This unified

method is applied to the Sea King where the lag damper causes a discontinuity in the

load at the inboard end of the blade. The modal-summation method and the unified

method are compared to Sea King flight-test data in figure 30. The unified formula-

tion shows much better agreement with the data.

A related problem in obtaining a modal solution for rotor loads prediction is

knowing how many modes are needed for accurate prediction. Yamauchi et al.

(ref. 50) have examined the effect of the number of modes used in comparing CAMRAD

with the SA 349-2 flight-test data. The analysis uses up to eight coupled flap and

chord modes, and up to four torsion modes. A comparison with the flight-test data

shows there is little effect on the flap bending moment correlation beyond the use

of five coupled modes, and for the chord bending moment correlation little change is

seen after seven coupled modes. For the blade torsional moment, it appears that two

torsion modes are sufficient.
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ROTOR LOADS REDUCTION

"Compared to the volume of literature available concerning

various devices which can reduce unacceptable vibration

(absorbers, isolators, higher harmonic control systems, etc.)

there appears to be a decided lack of information describing the

origin of the vibratory loading and how the loads may be

affected (reduced} through blade design. There may well be

design procedures which will substantially reduce or eliminate

the need for other vibration control treatment." - Blackwell,

1981

The aeroelastic environment of the rotor blade has several natural divisions

used by researchers to modify blade loads. First, one may define a series of loads

reduction concepts where the blade is aeroelastically tuned to avoid critical driv-

ing mechanisms such as severe aerodynamic loadings or frequency coalescence. A

second classification of research reduces the loads through blade and control system

coupling. Third, a substantial effort has been made to modify the blade's aerody-

namics to provide less excitation to the aeroelastic response of the rotor. The

following sections will address these three research areas through examples of

research and design concepts.

Blade Tailoring

Tuning the rotor blade to avoid critical driving mechanisms, both elastic and

aerodynamic, has involved several different approaches. These have included non-

structural mass placement, stiffness and mass distributions, and aeroelastic cou-

pling parameters. An example of the latter is the aeroelastically conformable rotor

(ACR) concept.

Conformable Rotor Research- Studies of conformable rotors at the beginning of

the review period examined the effects of blade properties on stall-induced control

loads. Blackwell and Commerford (ref. 24, summarized in ref. 75) examined the

effects of a number of blade parameters on control loads and concluded that tor-

sional frequency and inertia had a major influence on the loads (see fig. 25 and

discussion in Rotor Loads Prediction section). A similar effort by Tarzanin and

Ranieri (ref. 94, summarized in ref. 95) based on limited model test data and theo-

retical studies using C-60, also concluded that the torsion degree of freedom had a

significant influence on control loads, showing substantial reductions on the

retreating side as torsional frequency was reduced. However, they predicted that

further reductions in torsional frequency would show increased loads on the advanc-

ing side.

Later studies suggested that careful attention to the blade design could reduce

all blade vibratory loads and this has become known as the conformable rotor con-

cept. Reference 96 included a study of airload and vibratory loads from flight
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data. According to that reference, for three different rotor types " the phase

angles and spanwise distributions of the principal harmonics of airloads were

remarkably similar and the bending load distributions and phases were predict-

ably related to the hub configurations and to the modal natural frequencies." This

revealed a constancy in character for the forcing function and some hope of tailor-

ing the blade to redistribute the loads. It was suggested that vibratory flap

bending and lift deficiency be attacked using elastic twist distribution with such

design parameters as camber, chordwise c.g. position, and blade sweep. Test results

from a Mach-scaled hingeless rotor indicated that for a representative high speed

cruise condition, introducing a nose-up pitching moment reduced mid-span flap bend-

ing (I and 2/rev) by 40%. Furthermore, a I0° sweepback of the outer 35% of the

rotor radius reduced midspan flap loads by 10% in I/rev and by 30% in 2/rev. It was

noted, however, that phasing of flap loading harmonics with blade sweep prevented

unloading of the retreating blade and further inertial tuning would be required.

Studies such as the above encouraged a series of NASA/Army sponsored analyses

and tests of the ACR concept. Blackwell and Merkley (ref. 97) analytically investi-

gated time-varying elastic twist to improve performance and reduce loads, and then

provided design guidelines for elastic twist by qualifying the potential of several

blade parameters for producing favorable elastic twist. The impetus for this study

was a maximum rotor efficiency for a given rotor class. The Y200 analysis with two

inflow models was used to define the improvements possible with airload redistribu-

tion as shown in figure 31 using the elastic twist distribution shown in fig-

ure 32. Parametric sensitivity to rotor-design variables was investigated for a

torsionally soft rotor during the study with encouraging results (figure 33). Rec-

ommendations for model designs were made which emphasized the predicted tradeoff

between performance and blade loads for the ranges of conformable rotor design vari-

ables employed.

Testing of candidate ACR designs has included work in the Langley Transonic

Dynamics Tunnel (TDT). Weller (ref. 98) tested a four-bladed articulated rotor with

four different tip shapes. The blades had a high torsional stiffness (m 8 ~ 11/rev).
It was found that aft sweep of the blade tip by itself decreased flap and chord

oscillatory loads with respect to a rectangular tip as shown in figures 34(a)

and 34(b). The addition of tip anhedral, however, increased these loads. Both

sweep and anhedral in the tip region reduced torsional and control loads as shown in

figure 34(c).

The above analytical and experimental results encouraged more comprehensive

model testing of conformable concepts including that reported by Blackwell et al.

(refs. 76 and 77). In that research effort two blade sets of different torsional

stiffness were tested in the Langley TDT at four advance ratios and several hover

tip Mach numbers. Three tip shapes were used as well as trailing-edge tab deflec-

tion variations. It is noted that in the search for load alleviation, several

design parameters were incorporated for each model configuration. The elastic twist

differences caused by configuration changes shown in figure 35 were significant, and

an analysis of the resulting loads and blade response yielded several useful design

guides. For example, for the configurations tested that reduced advancing blade
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twist, blade loads were generally reduced as is shown in figure 36. It is of inter-

est to note that the torsionally soft configurations provided both the best and the

worst vibration environments with the highest vibratory loads on the rectangular ACR

and the lowest on the ACR with sweep and camber change. The camber changes also

generated the highest torsion moments at high blade loading.

Performance and rotor control sensitivity were evaluated for several configura-

tions. A correlation study using the Y200 code resulted in good trend agreement for

the elastic twist resulting from camber changes. However, the effects of sweep on

steady and I/rev elastic twist were overpredicted by the analysis. Wave form cor-

relation was poor as is shown in figure 37, but the trend of oscillatory loads with

rotor task was described as fairly good. The effect of configuration changes on

performance and loads for the rotor tasks shown was predicted fairly well as is

shown in figure 38. It should be noted that performance "rankings" changed signifi-

cantly with rotor task. Several conclusions from this study are useful to loads

reduction tailoring. The paper cites that a pitching moment coefficient change of

+0.03 effected a much larger dynamic twist than did 20 ° of tip sweep, and that both

sweep and camber reduced vibratory loads for the torsionally soft blade. However,

the torsionally soft blade generated loads as high or higher than the baseline

rotor.

The extensive work of reference 77 showed the potential of several design

variables for loads reduction when used in several combinations, but the isolated

sensitivity of each parameter and the effectiveness of each when used in combina-

tions remained elusive.

In an effort to understand and explore the relationship between torsional

loading and rotor performance, Yeager and Mantay (ref. 99) did an expanded test and

analysis of the configurations tested by Weller (ref. 98) including additional tip

configurations. For the baseline torsionally stiff (m e ~ 11/rev) model rotor used
in that test, the parametric variations of tip sweep, taper, and anhedral measurably

changed the elastic twist and integrated performance, but there did not appear to be

a strong connection between the two phenomena. The oscillatory and mean torsional

moment data of references 98 and 99 agreed with respect to configuration trends.

Yeager and Mantay (ref. 100) reported additional tests of the rotor originally

used in references 76 and 77, but with extended tips. This reference presents data

in tabular and graphic formats. Performance, harmonic blade and fixed system loads,

and torsional deflection data were offered to the analyst for correlation purposes.

The Army contractual effort which initiated much of the above ACR analysis and

testing also provided the impetus for the work described by Sutton et al.

{ref. I01). In that study, a selection of primary ACR parameters was made. A

series of codes providing predictions for performance, forced response, and stabil-

ity were used to parametrically vary key aeroelastic parameters for a four-bladed

rotor. The relative performance benefits of each parameter combination were

assessed, with torsional stiffness and tip sweep being found to be the most effec-

tive. A model rotor was constructed and tested in the Langley TDT for four config-

urations. Figure 39 shows the measured variation in the flap bending moment for the
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three four-bladed rotor models that were tested. A conclusion to this effort cited

the potential of the ACR concept if the cause and effect relationships of the design

variables could be well understood.

The ACR research effort reported on in references 76 and 77 was expanded in

order to understand the effects of aeroelastic couplings on loads and performance.

Mantay and Yeager have reported the results of a first stage of testing in refer-

ence 102 and the complete results in reference 103. Although the earlier work had

demonstrated the importance of tab deflection on vibratory loads, the primary

research emphasis of the new experiments was on the blade tip. Seven tips, incorpo-

rating single and combined sweep, taper, and anhedral, were tested for two different

blade torsional stiffnesses at several advance ratios in the TDT. Twist and iner-

tial properties were held to known values. Rotor loads were correlated with elastic

twist magnitude and azimuthal activity while explanations were offered for the

resulting rotor-control phenomena and substantial performance variations effected by

the simple and controlled combinations of ACR tip parameters. The practical aspects

of ACR track sensitivity were also addressed with significant differences in tor-

sional loads and response characteristics for the ACR maverick blade. The conclu-

sions offered in these references included the existence of a strong correlation

between azimuthal variation of elastic twist and rotor performance and loads. The

oscillatory flap bending moments are shown relative to performance rank in fig-

ure 40. The elastic twist variation with azimuth is shown in figure 41 for three

configurations as the performance rank decreases from I to 5 to 13. In addition,

there did not exist a strong correlation of elastic twist magnitude with performance

as is shown in figure 42. Finally, fixed system and blade loads as well as rotor

track for potential ACR candidates appeared very sensitive to parametric rotor

changes as shown in figure 43.

A similar parametric effort was analytically accomplished by Tarzanin and

Vlaminck (ref. 104). The goal of that study was to evaluate the effect of sweep

parameters on vibratory hub, blade, and control system loads. Furthermore, the

relative importance of flapwise and torsional stiffness was evaluated along with the

aeroelastic mechanism which produces the reductions in loads. An analytical invest-

igation was performed on a reference blade for which aft sweep was generally benefi-

cial to oscillatory loading. The C-60 was used, which included coupled torsion and

flap, planform sweep variations, shear center, neutral axis, chordwise c.g. and

pitch axis location variations. Airloads were modeled using compressibility, stall,

3-D flow, unsteady aerodynamics, and nonuniform downwash. The reference rotor in

this study was predicted to have its 4/rev loads significantly reduced by tip sweep

over a wide range of airspeeds. It was found that although the blade torsional

stiffness must not be too high and, thus, obviate the tip sweep effectiveness,

specific blade frequency placement and flap/pitch coupling were not necessary for

hub load reductions with sweep for the reference rotor. Reductions in 4/rev hub

loads were predicted for forward mass and aft aerodynamic center configurations with

respect to the blade's elastic axis. Elastic twist via c.g./ac distributions was

quantified and the correlation between 4/rev elastic twist and vibratory loads

strengthened. Several nonreferenced blade designs exhibited detrimental qualities

with aft tip sweep, but could be further altered with the predicted parameter
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sensitivities acquired in this study. The.understanding of the hub load reduction

method is illustrated in figure 44.

Modal Tailoring- The review of rotorcraft applications for design optimization

by Miura (ref. 105) included an overview of government and industry research in

loads reduction using new design methodologies. Several studies in loads tailoring

have been undertaken using empirical modal techniques and automated design analyses.

During these studies requirements to understand rotor loading mechanisms and design

parameter sensitivity were addressed.

Peters et al. (ref. 106) have presented the results of a grant effort to inves-

tigate the potential of tailoring blade properties to achieve weight, inertia, and

dynamic goals. A finite element model was used with the CONMIN code to solve 21

design problems. Simple beams as well as teetering and articulated rotor blades

were tailored for frequency placement. Reference 106 states that the frequency

placement formulation is a useful approach to vibration reduction for a prescribed

airload distribution. Numerical procedures and preferred operation of the design

method were defined. The achievement possible in the modal optimization process was

defined in large part by the rotor's rotational speed.

Prescribed airloads were also used by Pritchard et al. (ref. 107) for a sensi-

tivity analysis and optimization of nodal point locations for reduced vibratory

loads. Lumped masses were chosen as the design variables to move a node where

either low response is required, or to a point which makes a mode shape orthogonal

to the force distribution while minimizing the total amount of added mass. Direct

comparison with an optimization scheme that minimizes the generalized force indi-

cated that nodal placement has essentially the same success.

Friedmann and Shanthakumaran (ref. 108) have used optimization techniques to

directly minimize oscillatory vertical shears or roll moments at a specified advance

ratio. Frequency placements and hover stability margins were used as constraints.

Instead of prescribed airloads, a fully coupled flap-lag-torsion analysis was used.

The example chosen was a soft inplane hingeless rotor which, when optimized, exhib-

ited a 15-40% reduction in vibration, and was 20% lighter than the initial design

(though mass was not an objective function). At a cruise condition (u = 0.30) use

of linear hub shears as an objective function produced both shear reductions at all

advance ratios below 0.30 and hub rolling moment reductions. Nonstructural mass,

used for blade tailoring, was best placed along the elastic axis for the outboard

blade sections, since its impact on hub rolling moments and stability was not detri-

mental. The use of roll moment as the objective function with vibratory shear as

the constraint proved less efficient and the optimization technique of this work

offered little for a stiff inplane design in the proximity of an aeroelastic stabil-

ity margin.

Empirical methods for modal tailoring have been advocated by several research

organizations. Taylor (ref. 79) has presented a theoretical formulation which shows

that consideration of blade mode shapes can be as important as frequency placement

for vibration control. A modal shaping parameter (MSP) is derived that is a measure

of blade modal vibration severity (as was discussed in the Rotor Loads Prediction
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section above). When blade variables such as stiffness, mass, and mass distribution

are changed to drive MSPs to low values for a prescribed loading, Taylor predicts

that a lower vibration blade design will result. The Sikorsky analysis G4OO was

used to predict the effects of modifications to a baseline blade and calculated

reductions in the root shears and the blade loads as shown in figures 45 and 46,

respectively.

During a recent test of a Growth Black Hawk Rotor candidate in the Langley TDT,

modal-shaping techniques were attempted on the model blade. This was done with

nonstructural mass placement in an attempt to control the blade's second and third

flap modes. Two independent analyses were used to alter the modal properties based

on the predicted airload distributions and the predicted shears are shown in fig-

ure 47. The two analyses predict different locations for optimal mass placement and

each analysis indicates that the other's prediction will be nonoptimal. An experi-

mental program has been initiated at the U.S. Army Aerostructures Directorate and

NASA Langley which will provide for parametric modal shaping tests to evaluate this

passive technique further and provide a means for analysis verification.

A more complex approach to modal tailoring is presented by Yen (ref. 109) that

stresses that the interaction of structural properties of a rotor with airloads

distribution is a powerful tool for vibration reduction. In this approach, blade

stiffnesses, as well as radial and chordwise mass distributions, are design varia-

bles. For a four-bladed hingeless rotor, for example, the primary blade modes for

tailoring are cited as the second cyclic flap bending mode, which dominates the

3/rev blade root flap bending moment; the third collective flap bending mode, which

drives the 4/rev blade root vertical shear; and the second cyclic chord bending

mode, which influences the 5/rev blade root flap bending moment. Several design

methodologies are advocated. One uses assumed airload harmonic distributions and a

modal participation factor to lower the vibration contributions of offending modes.

An optimum design approach is also offered with constraints on blade weight, rota-

tional inertia, and bounds on stiffness and weight distribution. The objective

function includes 4/rev shears and moments. A comparison of the reduction in root

shear and moment obtained from prediction and a model test in a wind tunnel is shown

in figure 48.

The feasibility of using this tailoring technique for advanced blade geome-

tries, especially with unknown airload harmonics, provided the impetus for the

Tailored Bearingless Rotor Program. This program provides for the design and fabri-

cation of aeroelastically tailored model rotor blades for testing in the Langley

TDT. The five sets of blades include two baseline rotors, one with government-

designed advanced aerodynamic characteristics in terms of planform, airfoil selec-

tion, and twist. The three remaining rotors will have improved blade dynamics using

the Bell "nodalization" method. One of the three "nodalized" blade sets will also

have Bell-designed advanced aerodynamics characteristics. The primary purpose of

this effort is to determine what effects, if any, the "nodalization" method has on

rotor blades with advanced aerodynamic design. All five blade sets will be tested

on the ARES model in the TDT using a Bell model bearingless rotor hub. Rotor

204



performance, as well as rotor and fixed-system loads, will be measured for all

rotors over a wide range of test conditions.

Taylor (ref. 80) has conducted an analytical investigation to understand the

importance of certain blade-design parameters on rotor response. Blade modal shap-

ing, frequency placement, aerodynamic, structural, and intermodal couplings were

examined systematically to identify vibratory sensitivity to these techniques. An

example of how the various components of vibration combine has already been shown in

figure 26. Taylor states several "obvious" and "nonobvious" results from his study.

For example, the role of the lag mode in the 3/rev inplane shears and the canceling

of the applied forcing by the inertial response is listed as an obvious result. The

role of the flapping motion in forcing the example rotor's 3/rev edgewise mode is

cited as a "nonobvious" result of the research effort. In looking for a consistent

method to predict vibratory loads in rotor blades, Taylor concludes that nonuniform

inflow is not needed in cruise to produce vibration; the rotor operating in uniform

inflow is sufficient to induce vibratory loads.

Blade/Control Coupling for Loads Modification

Several research activities in the rotorcraft community have explored concepts

which modify blade loads through direct couplings in the rotor system or decoupling

devices in the rotating system. These concepts rely on prescribed blade motions

effected by control designs or load alleviation attained by rotor load non-

transmittal along the blade. An example of the first system, strongly supported by

Army/NASA rotorcraft research, is higher harmonic control (HHC).

HHC Blade Loading- The results of wind tunnel testing of an HHC concept are

described by Hammond (ref. 110). A dynamically scaled four-bladed model, incorpo-

rating harmonic pitch control, used an adaptive control system in a test in the

Langley TDT. Reduced vibratory loads in the fixed system were sought by altering

the loads at their source (the blade's aeroelastic environment). The vibratory

forces and moments to be minimized provided inputs to the HHC algorithms being

evaluated. The particular series of tests described by Hammond used the fixed-

system model strain gage balance as the vibratory load sensor. The model was tested

at advance ratios above 0.2, simulating Ig level flight, with the rotor trimmed to

the shaft. Blade loads data obtained for _ = 0.3 were fairly consistent with

previous open-loop testing in the TDT. Figure 49 shows a small reduction in the

flap bending moment, a large increase in the oscillatory chord bending, and a moder-

ate increase in the torsional moment. A possible explanation of the increase in the

chord-bending moment was the close proximity of the chord-elastic mode to 6/rev

which may have been aggravated by impurities in the 3/rev control inputs. Pitch

link loads increased with HHC because of the 3, 4, and 5/rev input requirements as

is shown in figure 50.

The goals of the wind tunnel program (reduced fixed-system vibratory loads)

were largely met. This provided impetus for an HHC flight program on an OH-6A

(ref. 111). In this test series, the HHC system was flown open and closed loop.

addition to the flight proof-of-concept program goals, the test scrutinized the

In
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rotating system loads. An example is shown in figure 51 for a 70-knot level flight

condition with ±0.33 ° lateral blade pitch in the open-loop HHC mode. The flapwise

harmonics follow the same trend with controller phase as the fixed-system vibratory

loads. The chord 3 and 4/rev do also, but the 5/rev harmonic is above the baseline

value, independent of controller phase.

Controllable Twist Rotor Loads- The controllable twist rotor (CTR) concept has

been studied for multicyclic operation by McCloud (ref. 112). The required tor-

sional deflections of the blade were driven by a servo flap as shown in figure 52.

This theoretical work used a transfer-matrix technique with a general rotor-control

code to explore the potential for altering loads. McCloud predicted that substan-

tial reductions in fixed-system vibration could be achieved with four harmonics of

servo flap control, with 2/rev controls providing most of the advantage. Adding

4/rev (instead of 3/rev excitation) reduced vibration at the expense of blade oscil-

latory bending loads.

Decoupler Concepts- Blade designs which prevent transmission of vibratory loads

across blade stations have provided loads data for unconventional boundary condi-

tions. An example of such a concept was tested in the Langley TDT by Hammond and

Weller (ref. 113) as part of a teetering rotor, scale model investigation of stall

flutter phenomena. Two sets of wide chord, I/5 scale, teetering rotors were tested;

one set had a midspan flapping hinge. As shown in figure 53 the hinge was effective

in reducing the flapwise loads. This was accomplished without the blades exhibiting

instability or excessive motion.

Aerodynamic Tuning Devices

Modifying the relationship between blade aerodynamics and blade motion has been

suggested as a means of altering loading mechanisms on the rotor. Several concepts

have been advocated such as blade-tip shapes, vortex alleviation devices, prescribed

tip motion, and blade/wake geometry variations. The vibratory loads which are

impacted by such concepts are of research interest because of the (usually) con-

trolled manner in which aerodynamic-design parameters are used.

Variable Geometry Rotor- A systematic design program was undertaken (as

reported by Mantay and Rorke, ref. 114) to study the phenomena associated with

blade/wake geometry, and to design a rotor which takes advantage of common aerody-

namic and geometric relationships. The resulting design was the variable geometry

rotor (VGR). Maneuver flight loads observed during vortex/blade interaction pro-

vided the motivation for a rotor-system design which could effect changes in the

geometric relationship between a rotor and its wake. The test plan for the VGR

included theoretical studies with a free wake (ref. 115), flow visualization, and

model scale hover, and forward-flight wind tunnel tests (ref. 116). Further analy-

ses simulating maneuvers (ref. 117) and a full-scale hover program (ref. 118) con-

tributed to the design's ability to alter blade loads and performance. Parameters

of interest in the above investigations are shown in figure 54.
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Initial studies (ref. 115) on the VGR indicated that changes in azimuthal

geometry and vertical spacing caused less excursions in harmonic loading between

rotors than did other key aerodynamic parameters. Radii and collective pitch

changes between rotors resulted in larger harmonic changes in certain rotor loads.

These initial efforts provided the impetus for a model rotor experiment, though the

driver was rotor performance, not the loads. Figure 55 shows a photograph of the

VGR model in the UTRC wind tunnel. Inertial scaling for the model configurations was

not matched to a representative full-scale rotor. In addition, forward-flight

configurations were chosen based on hover-performance results. The measured vibra-

tion for the VGR configurations tested did not vary with A_, Az, or with differ-

ences in blade pitch angle, and hence, provided no conclusive load-tailoring infor-

mation to support the predictions made in reference 115.

When full-scale VGR hover tests (ref. 118) were conducted, no vibration or

loads conclusions were drawn because of the hover mode. However, blade-tracking

phenomena were observed for the configurations tested. Loads information for the

VGR needed to be obtained while in forward flight on a dynamically scaled model. To

prepare for this, a comprehensive analysis was conducted (ref. 117) at several

advance ratios and for a symmetrical pullup condition. Blade shears, bending

moments, and pitching moments were calculated using analytical tools similar to the

reference 113 work.

An example of the predicted effect of VGR configuration on upper rotor-flap

shear harmonics is shown in figure 56. The loading harmonics on the lower rotor

were affected mainly by A_ variations. Reference 117 provided numerous examples

of harmonic loadings for geometric parameter variations between the rotors and their

wakes. In general, for a six-bladed VGR in a cruise condition, the lowest harmonic

loads occurred for two rotors vertically separated by Az = I chord and azimuthally

symmetric. In a pullup maneuver, the lowest flap shears were predicted to occur

for A_ = 90 ° for the same six-bladed rotor system.

Tip Planform- The rotor-tip region has long been recognized as critical for

performance and acoustics phenomena. Many researchers have explored the effect of

the blade tip's elastic, inertial, and aerodynamic characteristics on blade loads.

The effects of four different tips on the performance and loads of a full-scale

rotor have been studied in the Ames 40- by 80-Foot Wind Tunnel (refs. 67 and 119).

The tip geometries used are shown in figure 57, and the blade layout and instrumen-

tation are shown in figure 58. Performance and the first 10 harmonics of loads data

are tabulated in reference 67. In studying the effects of the different blade tips,

Rabbott and Niebanck (ref. 119) have concentrated on the control-loads information

and observed that significant variations in the loads were caused by tip-planform

changes. Major reductions in control-load harmonics were seen for one of the con-

figurations (swept-tapered). In figure 59, the data show high-frequency content

that was not predicted by the pretest aeroelastic analysis. Time histories of

control and flap-bending moments are given in figure 60 and show that tip shape

alters the advancing blade pitch-down moment and its effects on vibratory loads.

Prescribed Aerodynamic Devices- Imposing an aerodynamic loading at critical

blade stations has been the impetus for several rotor designs. The free-tip rotor
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is described in reference 120 and uses a tip-moment controller that applies a pre-

scribed moment, driving the tip to a nearly constant lift. (A schematic is shown in

fig. 61.) The concept was tested small scale (5.1 m diam) with interesting power

and loads results. An example of inboard flap-bending moment is shown in figure 62.

Harmonic analysis of these data cite I and 2/rev load reductions as the main cause

for oscillatory load reductions, at the values of advance ratio where reductions

occur. Figure 63, however, shows a substantial increase in inboard oscillatory

chord moment. The free-tip concept prescribes a weathervane effect, which seems to

generate lower control loads than does a fixed tip of the same (swept) planform as

shown in figure 64.

Another prescribed aerodynamic concept tested for loads alleviation is the

multicyclic jet-flap rotor (ref. 121). This 12 m diam, two-bladed teetering jet-

flap rotor was subjected to experimental transfer functions in forward flight in the

Ames 40- by 80-Foot Wind Tunnel. This was done to minimize either specific harmonic

bending stresses, rms levels of those stresses, or to lower fixed-system vertical

vibratory loads. It was shown that three harmonic controls could greatly reduce

specific components of loads.
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GUST LOADING

Dave Brandt: " to the best of your knowlege, has this

analysis [for gust loading] or any analysis that's

similar to this, ever designed so much as one rivet

on any piece of flightworthy hardware in the heli-

copter industry?"

Peter Arcidiacono: "To the best of my knowledge, I think the

answer is no."

- NASA SP-352, 1974

For design purposes, the effects of gusts are modeled by calculating an incre-

mental load factor using a simplified quasi-steady theory and multiplying this

incremental load factor by a gust-alleviation factor. For military aircraft, this

gust-alleviation factor is specified in the helicopter structural-design specifica-

tion, MIL-S-8698. The adequacy of this gust alleviation factor has been examined by

comparing the predictions of the Bell Helicopter Textron analysis C81 (ref. 122) and

the Sikorsky analysis Y200 (refs. 123 and 124) to simplified theory. Both the Bell

and Sikorsky studies concluded that the structural specification was too conserva-

tive and that the gust-alleviation factor should be reduced. The Sikorsky study did

note, however, that if blade stall was encountered, the appropriate gust-alleviation

factor was increased, but the requirements of MIL-S-8698 were still considered

unrealistic.

Arcidiacono et al. (ref. 124) have also summarized extensive measurements

obtained on aircraft during military operations. These measurements included load

factor and control positions. From the measurements it was possible to determine

load factors induced by maneuvers, and load factors induced by turbulence. A com-

parison showed that incremental load factors caused by gusts were much less than

those induced by maneuver, and the gust-induced loads represented only a small

percentage of the flight experience. This is summarized in figure 65 which shows

the frequency of occurence for both gusts and maneuvers. This figure clearly shows

that the rotor-design problem for military aircraft is one of specifying the maneu-

ver loading, not the gust loading.

The emphasis of the research in gust loading over the period covered by this

paper has been towards the development of calculation methods. Gaonkar (ref. 125)

provides an extensive review of the gust response of helicopters and relates this to

parallel work with fixed-wing models. Bir and Chopra (refs. 126 and 127) have

developed a math model to represent the response of a helicopter to a deterministic

gust field, and in their analysis, have included blade flap, chord, and torsional

flexibility; fuselage degrees of freedom; and a dynamic inflow representation of the

wake. They show that the rotor and fuselage response is sensitive to all of these

parameters as well as the assumed gust field. Prussing, Lin, and their colleagues
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have used a simplified rotor representation to examine the blade response to a gust

where the equations are derived in stochastic form (refs. 128 and 129). This for-

mulation, which is a more accurate representation of the physics, does not change

the blade-gust response significantly.

Recent experimental research on gust loading has been limited to examining the

response of a teetering helicopter to the vortex wake trailed from a fixed-wing

aircraft (refs. 130 and 131). Limited correlation with the Bell C81 analysis shows

fair agreement with the measurements. The analysis of Bir and Chopra (ref. 127) has

been extended to treat this case as well in reference 132. The methods of extending

rotor loads analyses to treat gust loads appear to be well in hand. However, the

significant problems that remain in calculating rotor loads accurately under

trimmed-flight conditions have prevented their extension to the problems of predict-

ing loads or ride quality in the forward flight gust environment. It does not

appear that gust loading is important in defining the vehicle load capacity. How-

ever, gust-induced loads may be important for some rotor components, especially when

the rotor is stalled. Tarzanin (ref. 133) has pointed out that flight-test data

used to compare with predictions are normally selected from smooth air tests and

carefully checked for repeatability. If, however, data are used from flights which

include turbulence, substantial load variations can be encountered. Figure 66 shows

the scatter band of measured CH-47C pitch-link loads for five test flights. This is

a case where the pitch-link loads are rising rapidly because of blade stall and

represent a critical loading condition. Although there is no information on the

actual flight conditions, the wide variation in loading suggests that the pitch link

load is very sensitive to gust loading under stalled conditions.
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MANEUVER LOADING

"In the future, it may be possible to predict envelope loads

completely by analytical means." - Gabel, 1973

The structural envelope for a new aircraft in terms of load factor and airspeed

will look something like the sketch in figure 67. The problem of loads prediction

discussed in this paper so far deals only with the loads on the rotor in trimmed,

I g flight. In the figure, this is represented by the long dash line that extends

from the maximum rearward flight speed to the forward speed at the 30-min rating of

the engine, VH. If a maneuver requirement is imposed, it might be something like

maintaining a specified load factor for a specified number of seconds without losing

too much airspeed. This is shown schematically in figure 67 by the heavy bar. The

periphery of the envelope represents structural limits. There are other limits as

well such as the engine power limit, and rotor aerodynamic limits. The power limit,

which is not shown here, may be thought of as the additional load factor that could

be obtained from excess power. For the case shown here, there is no excess power

available at either VH or hover; but in between, there is excess power, and the

peak in excess power will correspond to the speed for minimum power. The rotor

aerodynamic limit can be estimated from model tests reported by McHugh (refs. 134

and 135) where the blade lift was increased until it reversed sign and thus repre-

sents an aerodynamic limit, not a structural or actuator limit. Scaled to the V-n

diagram of figure 67 the rotor lift limit is represented by the short dashed line.

Operation of the rotor at any point outside these performance limits can only occur

for short periods of time. For some aircraft, it may be possible to demonstrate

compliance with the structural boundary only with the most extreme maneuvers. To

calculate the loads for these conditions requires not only solving all the rotor

load prediction problems that have been discussed previously in this paper, but also

solving the transient problem, as opposed to the trimmed problem.

A number of the comprehensive analysis programs solve the equations of motions

by time integration (ref. 2). Using these analyses, it is relatively straightfor-

ward to perform a transient-maneuver calculation starting from a trimmed steady

state condition. Van Gaasbeek (ref. 136) has compared the C81 analysis with mea-

surements made on an AH-IG during flight maneuvers. An example for a 2 g pull-up

from autorotation is shown in figure 68. The C81 calculation shows good agreement

in terms of the maximum level reached; however, there is some oscillatory behavior

that is not seen in the flight-test data.

Despite the capability that exists in a number of the comprehensive analyses

for calculation of maneuver loads, the normal procedure in the industry is to scale

maneuver loads on the basis of previous flight-test experience (refs. 3 and 12).

Gabel describes this process in considerable detail in reference 3.

The critical steps in rotor-blade design are the calculation of loads in

trimmed, unaccelerated flight to insure that all loads are within material allow-

ables for infinite fatigue life, and the assumed operational fatigue spectrum to
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define what the fatigue life will be. Considering the uncertainty that remains in

both of these critical areas, it is understandable that that the calculation of

maneuver and gust loads has not received a great deal of attention.

212



ASSESSMENT

"In fact, it can be argued that government and the helicopter

industry have not optimized the basic helicopter blade design

before resorting to exotic and sophisticated approaches and

devices. The fundamentals of vibration have not been

understood, and before radical planform changes, elastic

couplings, and active control are implemented, there must be

a basis of fundamental understanding based on analysis and

experiment." - Taylor, 1984

This paper has reviewed the research performed in the last 13 to 14 years in

the areas of rotor loads prediction and reduction. The assessment in this section

seeks to put this research into perspective by addressing three topics: (I) how

good are the present analyses in predicting rotor loads, (2) to what extent can

rotor loads be reduced through design practice, and (3) what has the government

contribution been in these areas. Inherent in this assessment is the identification

of areas that require new or increased research effort.

The question of how good the present analyses are for predicting rotor loads is

addressed below by examining the present predictive capability of the major rotor

loads analyses as reported in the literature. In addition, the analyses are exam-

ined to identify where advances from rotor loads research have been incorporated or

synthesized in the analyses. The question of the extent to which advances in rotor

loads reduction have been transferred to design practice is addressed by summarizing

the most productive research areas and discussing a limited number of applications

that have been reviewed in the literature. Lastly, the contribution of the govern-

ment is assessed indirectly in two ways. First, government support of research is

estimated by tracing the number of papers and reports published. Secondly, the

government development of public data bases is assessed by examining the use of

these data bases.

Rotor Loads Prediction

The 1973 AGARD meeting in Milan and the hypothetical rotor comparison of 1974

(ref. 2} provided a basis for assessing the capabilities of the rotor loads analyses

of the early 197Os. The present assessment is made substantially more difficult as

there has been no equivalent demonstration of the industry methods since that time.

For that reason, the present judgments are based upon incidental results that have

been published in the open literature. In some cases, there have been no calcula-

tions published since either the Milan meeting or the hypothetical rotor comparison.

The characteristics of present rotor loads analyses are shown in Table I

(refs. 137-142) and this provides a useful framework for subsequent discussion.

format for the table is similar to that used in reference 2 although some of the

The
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analyses shown in that reference are no longer in use and are not included here.

The table is believed to be current as of 1986.

The history of the development of the Bell Helicopter Textron analysis C81 is

covered by Bennett (ref. 5). Subsequent modification and documentation as of 1974

have been provided by Davis (ref. 143). The Army evaluated the capability of C81 to

predict rotor loads for aircraft other than teetering rotors by contracting correla-

tion studies for a hingeless rotor (ref. 144) and for articulated rotors (ref. 145}.

These studies revealed a number of significant limitations with C81, some of which

were addressed by McLarty in the 1977 version of the analysis (ref. 146). Further

modifications were made by Van Gaasbeek et al. (ref. 147} in 1979 including an

option to provide the inflow distribution from a free-wake calculation as an input

table. The inflow distribution is based on the free-wake analysis of Crimi

(ref. 139). In reference 148 Van Gaasbeek has updated the analysis to provide an

interface with DATAMAP.

Extensive comparisons have been made between the OLS measurements obtained on

the AH-IG helicopter (ref. 34) and C81 (refs. 34, 149-153). In general, these show

good prediction of the oscillatory loads; but the blade higher harmonics are not

well-predicted, even using the free-wake analysis. Correlation with flight-test

data for a prototype Model 222 with a teetering rotor (ref. 13) is shown in fig-

ures 69 and 70. The prediction of the distribution of the oscillatory flap-bending

moments is good, but the oscillatory chord-bending moments are overpredicted.

Figure 70 shows that the waveform behavior is not well predicted either with or

without unsteady aerodynamics. This lack of C81 waveform correlation is typical for

the OLS data for all blade loads (ref. 151).

The predictive capability of the C81 analysis for the four-bladed Model 412

rotor is shown in figures 71 and 72 (ref. 154). The comparison includes a configur-

ation where a tab on the outer portion of the blade is used to provide a nose-up

pitching moment. The prediction of the oscillatory blade bending moments is fairly

good, although the flap-bending moments are over predicted over the middle of the

span. Figure 72 shows that, although the analysis shows similar peak-to-peak levels

in the pitch link load, the waveforms are different, especially in terms of higher

harmonic content.

The Boeing Vertol analysis C-60 is not documented in the literature as the

government has directly funded only a small part of its development. A good

description of the program as it was used through the mid-1980s is given in refer-

ence 104. Recently the program has undergone two significant changes. First, it

has been restructured to take advantage of current programming techniques and to

make it more flexible for future use (ref. 53). Second, the blade representation is

now fully coupled in flap, lag, and pitch where previously the lag degree of freedom

was treated as uncoupled.

Correlation using the modified C-60 has not been published. Correlation using

the older version is shown in reference 155 using data obtained during lift-limit

tests of an articulated model rotor (refs. 134 and 135). Midspan flap bending and

torsion moment data are compared with C-60 in figure 73. The oscillatory loads are

214



reasonably well predicted for both flap bending and torsion. For flap bending there

is good agreement in the first harmonic, but surprisingly, the theory shows higher

harmonic content that is not seen in the measurements. The torsion moment data show

reasonable agreement on the advancing side of the disk in terms of amplitude and

phase, but not on the retreating side.

The Kaman Aircraft Corporation presently uses three analyses: 6F, which was

developed to model torsionally soft rotors with servo flaps; DYSCO, which has been

designed using current structured software methods; and a version of C81 that has

been modified to incorporate a servo flap (without a degree of freedom}. The 6F

analysis is described in reference 156. (There is no recent correlation published.}

The DYSCO analysis (ref. 157) is designed as a general method to couple and analyse

the dynamic behavior of individual components. No rotor loads correlation has been

published.

McDonnell Douglas Helicopter Company has used three analyses in recent years:

DART, which has evolved from the SADSAM analysis; RAVIB, which has evolved from

analyses developed at Rochester Applied Science Associates (RASA} in the mid-1970s;

and RACAP, which is an entirely new development. The DART analysis is not described

in the literature, nor are there any recent published comparisons of DART predic-

tions and measured rotor loads. RACAP is expected to become the primary loads

analysis for McDonnell Douglas, but as of yet details of its development and compar-

isons with rotor loads measurements have not been published.

The RAVIB analysis has been described by Gangwani in reference 32 and correla-

tion with the AH-IG OLS data (ref. 34} is shown in figure 74. For the correlation

shown here the model uses a free-wake analysis based on Sadler (ref. 115). In the

figure, the flight-test data are compared with a conventional aerodynamics model

without dynamic stall and Gangwani's synthesized stall model (ref. 30). The flap-

bending moment comparison shows good agreement with the I/rev load, but does not

show good agreement at the higher harmonics. The strong 3/rev loading seen in the

chord bending is fairly well predicted regardless of the aerodynamic model used. The

blade-torsion moments are only poorly predicted with the conventional aerodynamic

model, but the dynamic stall results show much better agreement. Calculations with

C81 for similar flight cases (ref. 151) show chord bending and torsion moment wave-

forms that bear little relationship to the measurements shown here.

Sikorsky Aircraft currently uses three analyses for rotor loads: the Normal

Modes Analysis, Y201; G4OO as part of the SIMVIB package; and RDYNE, which is a

recent development. The Y201 analysis was used for the calculations at the 1973

Milan meeting and for the hypothetical rotor comparison. Modifications have since

been made to the aerodynamic model to correct for yawed flow and swept tips. A

panel method can be used to represent the fuselage and calculate inflow at the rotor

disk which is induced by the fuselage. A new analysis, G400, was developed at the

United Technology Research Center in the mid-1970s under government funding. This

analysis was designed to model bearingless rotors and is described in refer-

ences 158-160. It is now incorporated in the SIMVIB executive and can be used for

the prediction of vibration as well as rotor loads (ref. 88}. Although G400 uses

numerical integration to solve the equations of motion, only the harmonic response
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is used in the SIMVIB computations. The newest analysis at Sikorsky is RDYNE

(ref. 161). It uses a component coupling structure that is the same as SIMVIB, but

uses numerical integration to solve the equations. It appears that RDYNE will soon

become the primary-loads analysis tool at Sikorsky, and Y201 and G400 will no longer

be supported.

The Y201 analysis has been compared with flight-test data and wind tunnel data

by Jepson et al. (ref. 66). The wind tunnel data are reported in reference 67. The

flight-test and wind tunnel data are quite similar, although the higher harmonic

loads are greater for the flight vehicle as was shown in figure 22. Figure 75

compares the radial distribution of the oscillatory flap and chord bending moments

as measured in flight and as calculated with the Y201 analysis. The prediction

using constant inflow is quite close to the measurements outboard of 0.30R for the

flap-bending moment, but neither inflow model gives good results for the chord-

bending moments. The variable inflow model is based on a prescribed wake and pre-

dicts the oscillatory bending moments quite poorly. It is both surprising and

disappointing that increasing sophistication in the inflow model causes the correla-

tion to degrade. The azimuthal time history for these moments, plus the pitch link

load, is shown in figure 76. Even if the amplitude were to increase to match the

flight test data, the harmonic character would not be matched.

The analysis G400 has been compared with model bearingless rotor data in ref-

erence 158. Limited comparisons of oscillatory bending moments have been made in

reference 88 using G400 as a part of SIMVIB. However, there is no recent correla-

tion that allows the azimuthal behavior of the analysis to be judged. No correla-

tion has been published for rotor loads using RDYNE.

Johnson has described the development of a comprehensive rotorcraft analysis in

references 162-164. The predictions of this analysis, now referred to as CAMRAD,

are compared with flight test data obtained on the SA 349-2 in reference 50. Fig-

ure 77 compares the lift coefficient obtained from pressure measurements at 0.75R

with the prediction of CAMRAD for a high-speed case. The predictions show good

agreement with the measurements, except for some high frequency oscillations that

are seen on the retreating side of the disk where the velocity is low. The calcula-

tions shown here were made with a prescribed wake. Calculation with a free wake

showed little difference, but both gave better results than calculation using uni-

form inflow. The correlation for rotor loads is shown in figure 78 for this case.

The predicted flap bending shows good agreement with the measurements for this

station, but the chord bending shows a great deal of 5/rev response that is not seen

in the data. The oscillatory pitch-link loads are overpredicted by CAMRAD, and the

agreement in waveform is not particularly good.

The results presented in the 1973 Milan AGARD meeting and in the 1974 hypothet-

ical rotor comparison indicated that the available rotor loads analyses could make

reasonable predictions of oscillatory rotor-blade loads. These loads are important

for the fatigue design of the rotor blade and control system. It seems to be gener-

ally accepted that the scatter in predictions that was calculated for the hypotheti-

cal rotor and is shown in figure 6 represents a worst case (or outer bound} on the

prediction methods. Within each company, it is felt that the oscillatory loads can
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be predicted with better accuracy if a new design does not differ too much from

previous designs. However, the results shown here suggest that even for the predic-

tion of oscillatory loads significant differences do occur and are not understood.

It does not appear that oscillatory loads can be predicted with any more confidence

now than in 1973.

An examination of the correlation for rotor load waveforms or time histories

suggests that the basic physics of the problem are not accurately modeled by any of

the rotor loads analyses. Even when the amplitude of the first harmonic load is

reasonably well-predicted, the phase is not. The correlation for higher harmonics

appears worse, but here it is difficult to make judgments as the waveform behavior

is normally dominated by the first and second harmonics, and this obscures the

higher harmonic behavior. There appears to have been some progress in the analysis

of separate parts of the problem; a great deal has been learned about dynamic stall

and wake induced velocities. But the various pieces of the problem have not gone

back together correctly; there has been no improvement in the synthesis.

The major features of the present rotor loads analyses came into place in the

early 1970s with the incorporation of dynamic stall and unsteady aerodynamics in

most of the analyses. Since then, there have been minor improvements and upgrades

to most of these analyses, but with the exception of the addition of the calculation

of fuselage induced inflow to Y201 and CAMRAD, there has been no change to these

analyses to improve their ability to represent the physics of the rotor loads

problem.

Computation speed has increased by at least a factor of 50 over this time

period and available computational capability does not appear to have hindered

development of improved analyses. What does appear to have limited advances in the

prediction of rotor loads is the twofold perception that, first, the prediction of

oscillatory loads is adequate, and, second, vibratory loads cannot be predicted by

anyone for the foreseeable future. That perception will not change until the accu-

rate prediction of vibratory loads is demonstrated.

Rotor Loads Reduction

The application of the conformable or compliant rotor has, to a degree, pre-

ceded the research into the ACR concept. The tip shape of the S-76 which first flew

in March 1977, was selected in part to reduce the control loads (ref. 165). The

S-76 swept/tapered tip does show a reduction in control loads for most thrust and

airspeed conditions when compared to other blade tips, as was shown in tests in the

40- by 80-Foot Wind Tunnel (refs. 119 and 67). The research efforts that followed

and that have been reviewed in this paper, examined blades that are, in general,

much softer in torsion than the S-76. As yet, the best combination of tip design

and torsional stiffness for reduced loads is unclear; what is necessary here are

further experimental and theoretical efforts.

The ACR research has demonstrated that pitching-moment changes induced by a tab

deflection can have a significant effect on the rotor loads and this approach has
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been used during a number of recent development programs after high vibratory loads

were encountered in initial flight tests. Yen and Weller (ref. 154) report the

application of negative camber to reduce steady and oscillatory rotor loads encoun-

tered in the development of the Bell Model 412 rotor. During development flight

testing, it was determined that the steady pitch-link loads were higher than pre-

dicted and this limited maximum up collective during boost-off operation. In addi-

tion, the oscillatory flap bending and torsion moments were higher than predicted.

They examined the effects of negative camber on rotor loads using th C81 analysis

based on the test experience with conformable rotors reported by Blackwell et al.

(ref. 77). This work suggested that the loads could be reduced for the Model 412

rotor, and as a consequence, they added a 1.25 in. tab between 0.80 and O.87R with

the tab set to -12 ° (trailing edge up). This resulted in approximately a 40% reduc-

tion in the steady pitch link loads, a 40% reduction in the oscillatory blade tor-

sion loads, and a 15% reduction in the oscillatory flap-bending loads.

Gupta (ref. 166) has reported on vibration and loads problems that were encoun-

tered during the testing of a Composite Main Rotor Blade (CMRB) for the McDonnell

Douglas AH-64. Unlike the Model 412 rotor, there was a steady positive torsion

moment on the blade, and positive camber was used to reduce the steady torsion load,

and this also reduced the vibration. It was also determined that the vibration

could be reduced by reducing the tip thickness. Although it is stated that the DART

analysis was used during this investigation, no examples of its predictive capabil-

ity are given.

Yen and Tanner (ref. 167) discussed development tests of a Composite Main Rotor

Blade (CMRB) for the UH-I aircraft. The design goal was to significantly improve

the performance of the blade without changing the dynamics. Design calculations

using C81 showed that the CMRB 2/rev hub shears were substantially higher than on

the metal blade. A number of design changes were examined and two were selected: a

chordwise c.g. shift and a reduction in nonlinear twist. Calculation showed that

this reduced the hub shears, but they were still higher than for the metal blade.

When the CMRB was flight tested, the predictions of C81 were borne out as the cock-

pit vibration was significantly higher. To reduce the vibratory shears, a tab was

added outboard and this was able to reduce the vibratory loads back to the level of

the metal blades. It is not clear at this time whether the original performance

goals of this rotor can be met following the modifications that have been made

necessary by the high vibratory loads.

Research into the potential for loads reduction through mass and stiffness

distribution changes has shown great promise. Yen (ref. IO9) has described a number

of approaches used at Bell including the classical frequency-separation approach, a

preliminary design method that calculates root shears based on assumed airloads, and

a formal optimization approach. The newer approaches have shown considerable prom-

ise for model-scale data (fig. 48) and these techniques will be applied on the next

generation of rotors at Bell. Similar techniques have also been applied at Westland

for the British Experimental Rotor Program (B_RP) rotor as described by Hansford

(ref. 168) and have shown a substantial reduction in vibratory loads. These
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successes suggest that the design for vibratory load reduction will become more

important in the preliminary and detail design process for new rotor developments.

The research into loads reduction using mechanical or electrical feedback has

been relatively inconsequential over the last decade with the exception of higher

harmonic control (HHC). The demonstration programs to date have shown that HHC is a

very powerful means of loads control, but any future applications will be directed

toward vibration reduction in the cockpit.

Recent research into new rotor configurations that include loads reductions as

a benefit has been done in the period covered by this paper. This includes the

jet-flap rotor, the variable geometry rotor, and the free-tip rotor. However, at

this time only the latter concept is being pursued.

Government Support of Rotor Loads Research

The government support of rotor loads research is assessed in two ways. First,

research funding is examined in terms of its output; that is, published papers and

reports. Second, the value of government-supported data bases is assessed by exam-

ining their use in research. Neither of these measures is comprehensive nor exact;

such a metric does not exist. However, they do provide a useful framework for a

discussion of the government role in rotor loads research.

The results of government research funding can be assessed by tracking the

number of research reports and papers published each year that were funded under

government contract or grant. All papers examined as part of this review are

included (not all cited) with the exception of survey or summary papers. The data

are filtered using a 3-year running average and are shown in figure 79. The number

of papers published tends to be cyclical depending on the technical meetings being

held each year. In general, the number of papers or reports being published each

year is holding constant and, hence, the funding for rotor loads is assumed to have

been holding relatively constant. Research into load-reduction methods appears to

use a quarter to a third of the resources applying the measure used here.

The government contribution to rotor loads research appears to have held fairly

constant over the last decade. A major transition that has occurred, however, is

that the government investment in comprehensive analyses is now largely restricted

to programs that have been (or are being} developed internally, that is, CAMRAD and

the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The gov-

ernment has made a major contribution in the past to the development of a number of

the comprehensive models used by industryand has attempted to transform some of

these analyses into well-documented, general-purpose analyses that could be used by

both industry and the government. This effort to develop a public domain, compre-

hensive model based on an industry code has not been successful. As a consequence,

the government is proceeding with the development of 2GCHAS with industry participa-

tion. Although CAMRAD was developed more by individual initiative than government

plan, its continued development represents an essential part of research in the
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rotor loads area at least until 2GCHAS is operational and has demonstrated that it

can support future progress in this area.

The second measure that is used to gauge government support of rotor loads

research is the development of rotor loads data bases. Research in rotor loads and

a means of reducing rotor loads has been continuously guided by experimentation.

Data obtained in flight tests or wind tunnel tests have been used to improve the

capability to predict rotor loads and to find methods to reduce rotor loads. The

effort and expense of obtaining a set of data may be justified by the immediate

answers that are provided by the data, or in some cases, the major justification for

the data is its long-term value in the form of a data base.

The government makes a major contribution to research in rotor loads either by

funding or performing the experiments that lead to the development of data bases.

The experimental data and data bases may be used in many ways and this use is some-

times published and sometimes kept proprietary. For this assessment, it is only

possible to examine the published uses of data. Although the limitations of this

approach are recognized, the approach is still considered useful.

The experimental data obtained over the period covered by this paper were

examined, and if the data were provided either in tabulated form or on a formatted

tape, then the data were considered to constitute a data base. Nine data bases were

found and these are listed in Table 2 (refs. 169-175). Most of these data bases

were used by the original investigators, at least to a limited extent, and this use

is referred to as a "primary reference." If the data base was subsequently used by

another investigator, then that use is referred to as a "secondary reference." Of

the nine data bases, only one has been used regularly by subsequent investigators

and that is the AH-IG OLS flight-test data base.

All of the data bases in Table 2 were funded by the government except for the

SA 349-2 flight-test data base. The use of the AH-IG OLS flight test-data by subse-

quent users is clearly a success, but the lack of use of the other data bases is

discouraging. It is recognized, as noted above, that the published use of a data

base is not its only justification. Unpublished use of a data base to guide propri-

etary design or aircraft development may justify the expense of developing that data

base. In addition, a well-documented data base may prove valuable for many years,

and the lack of initial use does not mean that the data base may not become very

useful. No better example of this facet of data base use can be seen than in

Hooper's comparison of data bases many years after they were obtained (ref. _O).

However, it is unclear whether the use of the government-developed data bases justi-

fies the expense in creating them. Certainly the development of new data bases

should not be undertaken without a substantial expectation of their future use.

Table 2 evaluates only the use of data bases developed during the time frame of

this paper. A related question is what has been the use of all data bases during

the past 13-14 years, not just the recently developed ones. This question is exam-

ined by looking only at a subset of available data bases, those that include both

surface-pressure measurements and blade-moment measurements. The nine data bases

that fall into this category are shown in Table 3 (refs. 176-180). First, all use

220



of these data bases in the time frame of the paper are categorized as "references."

Secondly, when the data base was used by an organization other than the test air-

craft manufacturers, then this is referred to as a "non-self reference." Of the

nine major data bases, two have never been used. These are the CH-47A and AH-IG

TAAT data bases for which tabulated data were never provided and the data on tape

have been too difficult of access to encourage use. The UH-I and XH-51A aircraft

data bases have had only limited use in recent years. The NH-3A and CH-53A data

bases have had fairly extensive use, but only by the aircraft manufacturer. Of the

nine data bases, only three appear to be in widespread use--the CH-34 flight test,

the CH-34 wind tunnel test, and the AH-IG OLS flight test. The development of a

major rotor loads data base is clearly expensive, but the use that these data bases

will be put to is never so clear.

An alternative approach of assessing the use of data bases is to compare the

use of proprietary data bases with those that have been developed and supported by

the government. Again, the basis for comparison is imperfect as only the published

literature is used to judge comparative use. Sixty-five references to full-scale,

flight-test data were noted in preparing this paper. Of these 60% referenced a

government-developed data base, while the other 40% referenced company proprietary

data bases. The use of proprietary data bases is, of course, much more significant

for unpublished work. What governs the choice of a data base is not completely

clear. However, it does appear that there are at least three primary factors:

(I) ease of access to the data base, (2) test documentation, and (3) validation of

the data. These factors are more easily accommodated in the development of a pro-

prietary data base than a public one.
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CONCLUSIONS

The present paper has reviewed the research that has been performed in the area

of rotor loads in the 13 to 14 year period since the 1973 AGARD Milan meeting and

the 1974 hypothetical rotor comparison. The conclusions of this review are::

I. The detailed predictive capability of the present rotor loads analyses is

barely satisfactory for the prediction of oscillatory loads. It is not satJ.sfactory

for the prediction of vibratory loads.

2. There is a pressing need for an improved rotor loads predictive capability

within the government. At the present time, there is no clear evidence of what the

major limitations are of the current rotor loads analyses for the prediction of

vibratory loads. This information cannot be obtained without a systematic compari-

son of prediction and measurement using CAMRAD now, and 2GCHAS when it becomes

available.

3. There is a significant need for quality data including blade-pressure

measurements and extensive and complete structural measurments. Maximum efforts

should be made to insure that the data are valid during both the experiment and the

data-reduction process. In the case of aircraft flight test, there must be a com-

mitment of open test time for subsequent tests. Development of data bases should

proceed only if there is a firm, long-range program to use the data within the

government.

4. The research in rotor loads reduction has demonstrated that there is a

substantial potential for reduced vibratory loads in new rotor design. However,

clear design guidelines have not been developed from research performed to date.

Additional theoretical and experimental work is needed to understand the sources and

mechanisms of vibration.
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RECOMMENDATIONS

As a result of this survey it is recommendedthat:

I. The government should continue the development of its own comprehensive
rotor analyses, specifically CAMRAD,which is operational, and 2GCHAS,which is
under development. It is important that this work be done by the government using
their best analysts.

2. Systematic comparisons of theory and experiment for rotor loads should be
expanded. These comparisons should specifically examine the behavior of the vibra-
tory loads for harmonies three and higher.

3. A program of theoretical model testing should be started using CAMRAD.The
objective of this testing should be to compare the relative merits of alternative

theoretical models using experimental data where possible to discriminate between

approaches.

4. The government should initiate a program of full-scale rotor testing with

limited blade surface pressure instrumentation to support the development of rotor

loads analyses and theoretical-model testing. This program should be considered

complementary to the fully-instrumented rotor tests that are presently being

planned.
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TABLE 2.- USE OF RECENT ROTOR LOADS DATA BASES.

Data base Source Type

Primary Secondary

references references

CH-34 model rotor

wind tunnel test

AH-IG OLS flight test

AH-IG/NLR-IT flight

test

AH-1G/10-64C flight

test

AH-IG/RC-SC2 flight

test

S-76 rotor wind

tunnel test

ACR model rotor

wind tunnel test

AH-IG/tip aeroaeoustic

test

SA 349-2 flight test

Niebanck, 1974 Tape

(ref. 169)

Shockey et al., 1977

(ref. 36)

Morris et al., 1979

(refs. 170 and 171)

Morris et al., 1980

(refs. 172 and 173)

Morris et al., 1980

(refs. 174 and 175)

Johnson, 1980

(ref. 67)

Yeager and Mantay, 1983

(ref. 100)

Heffernan and Gaubert,

1986 (ref. 54)

I I

Tape 2 8

Tabulated I 0

Tabulated I 0

Tabulated I 0

Tabulated 2 2

Tabulated I 0

Tape 0 0

Tabulated/

tape

I 0
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TABLE 3.- USE OF MAJOR ROTOR LOADS DATA BASES.

Data base Source Type

Non-self

References references

UH-I flight test

CH-34 flight test

CH-34 wind tunnel test

CH-47A flight test

XH-51A flight test

NH-3A flight test

CH-53A flight test

AH-IG/OLS flight test

AH-IG/TAAT flight test

Burpo, 1962

(ref. 176)

Scheiman, 1964

(ref. 41)

Rabbott et al., 1966

(refs. I and 51)

Pruyn, 1968

(ref. 177)

Bartsch, 1968

(ref. 170)

Fenaughty and Beno,

1970 (ref. 179)

Beno, 1970

(ref. 180)

Shockey et al., 1977

(ref. 34)

Tabulated 2 I

Tabulated 10 8

Tabulated 7 5

Tape 0 0

Tabulated 2 I

Tabulated 4 I

Tabulated 6 I

Tape 10 5

Tape 0 0
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Abstract

The paper describes the development and application of comprehensive ro-
torcraft analysis methods in the field of rotorcraft technology. These large scale
analyses and the resulting computer programs are intended to treat the complex
a_'.romechanicM phenomena that describe the behavior of rotorcraft. They may
be used to predict rotor aerodynamics, acoustics, performance, stability and con-
trol, handling qualities, loads and vibrations, structures, dynamics, and aeroe-
lutic stability characteristics for a variety of applications including research,
preliminary and detail design, and evaluation and treatment of field problems.
The principal comprehensive methods developed or under development in recent
year1 and generally available to the rotorcraft community because of US Army
Aviation Research and Technology Activity (ARTA) sponsorship of all or part of
the software systems are the Rotorcraft Flight Simulation (C81), Dynamic Sys-
tem Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program
(SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and
Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program

{GRASP}, and Second Generation Comprehensive Helicopter Analysis System
(2GCHAS).
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1 Introduction

For the past decade the Army Aviation Research and Technology Activity

(ARTA) has sponsored programs directed toward the development of compre-

hensive rotorcraft analysis methods. The goals in sponsoring this development

have been twofold. The first goal has been to provide a basis from which to

advance the state-of-the-art in analysis methods. The second goal has been to

provide the Government with analytical tools which could be used to evaluate

present and proposed Army rotorcraft accurately, quickly and fairly. These ana-

lyrical methods developed have also provided the rotorcraft manufacturers with

tools which have been used in their own design efforts.

The rotorcraft industry matured and the vehicle proved to be vital to the

Army's missions just as mainframe computers became available. Rotorcraft

analysts made use of this new computational capability to solve numerically
the complex sets of nonlinear differential equations that describe the aerody-

namics and dynamics of rotorcraft. From specialised analyses formulated and

programmed by one or two individuals there evolved more comprehensive anal-

yses which merged two or more disciplines and which became important factors

in unifying the design process (ref. [1]). However, Ormiston (ref. [2]) showed
that the best industry analytical tools provided wide differences in the pre-

dicted ]<>ads for a hypothetical simple rotor system. The Army's UTTAS and

AAH competitions exposed serious difficulties in modeling the elastic coupling in
flexbeam rotor systems and in assessing the influence of main rotor wake on the

fuselage and the tail. These problems were intimately related to inaccurate pre-

dictions in the technical disciplines of loads, vibrations, performance, stability

and control, and aeroelastic stability. Schrage (ref. [3]) illustrated the problem
that confronted the Army during the recent Advanced Helicopter Improvement

Program (AHIP) Source Selection Evaluation Board (SSEB). The AHIP SSEB
The AHIP board used 27 different codes to accomplish this proposal evaluation.
The analysis software had to be verified on similar data bases in advance of the

board and available on computers to be used during the evaluation. The input
and data bases for these programs were basically incompatible with one another

and each program required a trained expert knowledgeable in it use. Thus, the

inaccuracies and the incompatibilities of software available has spurred both

Army and industry interest in improving the analysis methodology.

In order to address the need for better analytical tools for rotorcraft, the

ARTA began focusing on near term and long range solutions to the multidis-

cipline analysis problems. In the near term, a current industry code was en-

hanced and encouraged for use as an industry standard. This was the C81 code

(ref. [4]) developed by Bell Helicopter Textron. The primary, funding for this

enhancement came from the ARTA Aviation Applied Technology Directorate
(AATD). Further, to establish an improved capability for analysing designs for
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low vibration rotorcraft and include the effects of rotor/airframe coupling, the

development of the new SIMVIB code (refs. [5,6]) by Sikorsky Aircraft Cor-

poration was supported by the ARTA Aerostructures Directorate (ASD). This

particular code was to be used in support of an ongoing Army-NASA rotorcraft

validation program effort.

To address the longer range problem of obtaining an advanced state-of-the-

art code which would provide an industry-wide accepted standard for analysis,

two other initiatives were undertaken. The AATD supported a set of three pre-

designs for an interdisciplinary computer system that would address a broad

range of technical disciplines. This interdisciplinary concept for the predesign
effort was referred to as the Second Generation Comprehensive Helicopter Anal-

ysis System (2GCHAS). The predesigns were summarised in references [7,8,9].
The other initiative was an inhouse effort by NASA and the ARTA's Aeroflight-

dynamics Directorate (AFDD) which resulted in the CAMRAD program (refs.

[10,11,12]). This effort was referred to as a ageneration and a- halff capability
since it was more mathematically consistent and comprehensive than the avail-

able industry codes but still fell short of the ambitious 2GCHAS requirements.

The state of the rotorcraft analysis capability was thoroughly reviewed at the

conclusion of the 2GCHAS predesign activity at a workshop sponsored by the

AFDD (ref. [13]). A review of the Army options at that time spawned three new
efforts. First, the major long range goal of developing 2GCHAS was re-affn'med

and the task for development of the code was assigned to the AFDD. Second,

this effort was augmented by supporting a prototype code which addressed an

approach to satisfying the dynamic coupling requirements for 2GCHAS using

concepts introduced by Kaman Aerospace Corporation during the 2GCHAS

predesign (ref. [8]). The features addressed by the DYSCO code were basi-

cally related to structural dynamic modeling and little attention was given to

aerodynamic modeling (ref. [14]). Third, an inhouse research effort to advance
the of state-of-the-art was initiated at the AFDD. This study was directed to-

ward improvements in modeling elastic structures by developing a higher-order

beam element capable of undergoing large elastic deformations, and implement-

ing kinematic constraints capable of unrestricted rotations. The code developed

from this research effort was referred to as GRASP (ref. [15]). Although the

technical discipline capability in GRASP was limited to hover stability problems,

the beam element and multi-body connectivity concepts were far in advance of

what was being used in finite element codes and it was anticipated that these

concepts would be included in future versions of 2GCHAS. Even though, strictly

speaking, the GRASP code is not a multidisciplinary code, its infuence on mul-
tidisciplinary code future development provides the justification for including it

in the discussion of this paper.

The multidisciplinary codes developed by the ARTA sponsorship fall into

three development categories. The industry-developed codes are C81, DYSCO,
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and SIMVIB. The Government-developed codes are CAMRAD and GRASP.

The 2GCHAS code occupies a unique category of joint industry-Government

development. In the following sections the codes will be described briefly and

compared with respect to function, math basis, and applications. Other codes

have been surveyed in reference [16,17].

2 Program Descriptions

2.1 Rotorcraft Flight Simulation, C81

The Rotorcraft Flight Simulation code developed by Bell Helicopter Textron

is best known by it's program designation C81 (ref. [4]). It is nearly as old

as the modern era in mainframe computers. It was originally programmed for

the IBM Model 7070 computer as a rotor model to provide rotor inputs to an

aircraft stability and control analysis. It has evolved through a combination
of Government and Bell IR&D development funds and it's use in SSEBs was

an important factor as it became the most widely distributed first generation

comprehensive analysis. C81 provides an interesting study in program evolution.

As the original stability and control oriented program was given the capability

for time varying maneuvers it was broken in to parts - a primary processing

program and a post-processor to do plotting and analysis of time history data.

When an aeroelastic rotor analysis was added, a rotor blade eigenanalysis was

required to provide rotor blade natural frequencies and mode shapes, but it ran

as a separate step. Recently, an aircraft design optimization feature has been

wrapped around C81 and an executive has been added to control the various
optional analyses in the system. It is this new program that will be discussed

through the remainder of the paper.

The executive developed to accomplish this is designated the Rotorcraft

Design Optimisation Computer Program (RDOCP) and the suite of programs
under its control include: (1) an input parsing and control program, (2) the

system FORTRAN compiler, (3) the system linker; (4) the Myklestad Rotor

Natural Frequency Program (rotor blade eigenanalysis), the C81 primary anal-

ysis and either of two commercially available nonlinear programming programs
integrated into a single job step, (5) a Myklestad plotter, (6) the post-processor

program for C81,(7) a C81 plotter, and (8) a DATAMAP interface program (ref.

[18]). A schematic of the RDOCP executive is shown in figure 1. The input

parse and control program sorts the input stream into files for each of these

programs as required for the requested mode of operation and creates job con-

trol language for subsequent job steps. The inclusion of the system FORTRAN
compiler and linker permit routine definition of nonstandard objective and con-

straint functions for the design optimisation problem in FORTRAN as well as
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temporary modification of the C81 code. The program has eight modes of op-

eration: (1) Myklestad only, (2) C81 only, (3) Myklestad followed by C81, (4)

Optimised Myklestad, (5) Optimised C81, (6) Myklestad followed by optimised
C81, (7) Optimised Myklestad followed by C81, and (8) Optimised Myklestad

and C81 together. While many operational enhancements have been made to
C81 and program bugs have been eliminated, there have been no major technical

discipline improvements to the primary C81 code in the last ten years.

In one of the more complex scenarios, the executive would enable the user to

modify the C81 FORTRAN source code, create in FORTRAN his own objective

and constraint functions for an optimisation problem, relink the object modules,
define the initial aircraft parameters using a previously defined database and

NAMELIST changes, calculate rotor blade eigenvalues and eigenvectore, com-

pure an aircraft trim condition using the complete set of governing nonlinear

differential equations, and optimise the design as described by any of the contin-

uous input variables. In a subsequent run the user could analyse the response
of this design in a maneuver, interrupting the maneuver to determine stabil-

ity derivatives at any moment using a perturbation technique, and plot any of

several thousand available outputs on the line printer or a plotter. The user

could save the output on a file and use the postprocessing code, DATAMAP,
for additional analysis and graphical display.

The analysis is applicable to rotorcraft with up to two rotors in all common

configurations. Rotor blade and pylon dynamics are represented uding the modal

method. Single load path teetering, gimballed, hingeless and articulated rotors

may be modeled directly. Multiple load path rotors may be approximated in the

Myklestad analysis by inputting hub mass and stiffness properties developed us-

ing NASTRAN, by using specially developed subroutines for specific bearingless
configurations, or by adapting well-documented hub component subroutines to

account for unique concepts. Pylon modes must also be calculated using an ex-
ternal analysis such as NASTRAN. The primary analysis capabilities are rotor

and aircraft performance, flight path dynamics, airframe stability and control,

and rotor loads in trimmed and maneuvering flight. Rotor aeroelastic stability
may be inferred by simulation of an appropriate maneuver to excite the mode

of interest and post-processing the response time history.

Rotor aerodynamic analysis options include 2-D airfoil coefficients from ta-

bles or curve fits; two methods to generate unsteady corrections, 3-D corrections,

and modified Glauert inflow or harmonic coei_cient inputs based on external

data or analysis. Trim is obtained using a modified Newton-Raphson technique

including either first harmonic elastic response or direct numerical integration

of the system differential equations. In addition to the basic force/moment/one-
per-rev flapping trim, other trim options include constant power climbs and

descents, steady pullups and turns, rotor only and a number of others.
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Aircraft and analysis components are described using individual data groups

which may be stored in a data base and include: airfoils as generalised curves or

tables, rotors, rotor modes, pylon/fuselage modes, nonuniform induced veloc-

ity distribution, rotor induced velocities at lifting surfaces, fuselage, wing, sta-
bilising surfaces, jets, external stores, dive brakes, control rigging, bobweight,

weapons and SCAS. Transient maneuvers which may be simulated include: con-

trol displacements from trim positions; rotor tilting; vertical, horisontal and vor-

tex induced gusts; engine power changes; auxiliary thrust; weapon fire; changing

RPM, rotor brake; SCAS failures; deployment of drag brakes and stores; and
changing incidence angles of lifting surfaces. In addition there is a simplified

pilot representation which attempts to maintain aircraft trim attitude upon ex-
periencing these transient effects and a capability to follow a trajectory specified

in terms of angular rates and normal load factor.

2.2 Dynamic System Coupler, DYSCO

In contrast to programs like C81 which grew as engineering analyses and sub-

sequently had executive features added, DYSCO was initially developed as an
executive concept demonstration which was almost totally devoid of useful tech-

nical analytical capabilities. The concept demonstrated by Kaman Aerospace

Corporation (refs. [19,20]) was that transformation matrices similar to those

proposed by Hurty, (reference [21]) could be used to assemble a set of rotorcraft

system differential equations from a number of sets of subsystem differential

equations by comparing the names the program user had assigned to the sub-

systems' degrees of freedom. In DYSCO, assigning the same arbitrary name

to degrees of freedom in two subsystems couples the two systems together at
those degrees of freedom, e.g., giving the name FRED to the lateral hub de-

gree of freedom for a rotor and to the mast lateral degree of freedom for the
fuselage equates those two components in the lateral direction (and the lateral

direction only). Improved rotor modules and input facilities were added to the

program after the initial demonstration was completed satisfactorily (ref. [22]).
Experience with the resulting code indicated that DYSCO was well suited to

the investigation of nonstandard airframe configurations such as those due to

damage and that the addition of a rotor blade damage model would provide a

comprehensive and easy-to-use damage assessment technology. Under an ongo-

ing contract, the AATD is sponsoring development of the blade damage model,

the incorporation of a global reference system and several other features. In ad-

dition, the Air Force sponsored the development of capabilities for applications
not related to helicopters. Added capabilities are general modal representa-

tion of three- dimensional structures, a landing gear model, enhanced solution

techniques, general forces, linear constraints and an improved eigenanalysis to

include nonproportional damping terms. Demonstrations of these new capabil-
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ities will be provided at the Air Force Wright Aeronautical Laboratories and

the AATD in the spring of 1987.

The version of DYSCO discussed herein is DYSCO 4.0. The basic opera-
tional scenario for DYSCO is a three-step procedure which consists of defining

the subsystems (or components), defining the system (or model), and execut-
ing a solution. The modularity of the DYSCO architecture is illustrated in

figure 2. The components available in DYSCO include a modal, thin-beam

fuselage, a rotor with rigid blades, a rotor with elastic blades, a rotor control

system with elastic rods and swashplate, a general structural finite element, a

nonlinear spring, and an arbitrary linear constraint. Force modules include a

sinusoidal shaker, two-dimensional aerodynamics from empirical equations or

tables, a more general rotor aerodynamics module, fuselage flat plate drag, and

fuselage linear aerodynamics. The more complex rotor and fuselage aerody-

namic modules are based primarily on the same technology as that contained
in C81 and do not represent an improvement in the state-of-the-art.

As shown in figure 2, the solution module, adefine solution" is separated

functionally from the _form coupled system" math model formation. The solu-

tion modules available in DYSCO include eigenanalysis using the power method
and the Householder method, a time history solution using Runge-Kutta, a Flo-

quet stability analysis, a trim analysis using the technique of periodic shooting,

and a frequency domain mobility calculation. The rotor, hub and airframe forces

and responses are fully coupled and the system equations of motion are solved

simultaneously.

The primary capabilityof DYSCO isto calculatedynamic response and

loads,from which some overallperformance predictionscan be obtained. Until

the globalcoordinate system isadded, which willpermit directrepresentation

of gravitationaleffects,DYSCO will not be suitablefor aircraftflightpath

dynamics predictionsand there are no plans to extend the system to the areas

of stabilityand controlor to acoustics.

3.3 Coupled Rotor/Airframe Vibration Analysis Program,

SIMVIB

The concept forSIMVIB, as shown infigure3 and describedinreference[5],was

to develop an interactivecoupled rotor/airframeanalysispackage which could

be used for preliminarydesign of new rotorcraftor for vibrationtreatments of

existingaircraftwith a emphasis on providing good interactiveresponse. To do

this,on-llnecomputing requirements were kept low by doing the realnumber

crunching computations off-linewith a suite of programs provided with the

base program. The effectof the fuselageon rotor aerodynamics, the rotortrim
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state, rotor forces, rotor impedance, and fuselage vibratory forces as affected by
the rotor are all calculated externally to the base program. The base program

couples subcomponents using the Hurty method and provides steady forced

response, time-varying response and eigenvalue solutions. Although a suite of

programs was provided to perform the external calculations, any other analysis
can be used if data formats are consistent with SIMVIB.

Figure 3 illustrates the data transfers between the base program and the suite

of external programs. Iteration between programs is indicated by two separate

arrows between the programs and the labels on the arrows characterise the data

being transferred. The data transfers are accomplished by file transfers and the

base program operates in a stand-alone mode to obtain solutions.

Substructures available in the base program include a vibration absorber, a

generalised force, a uniform elastic beam, a connection constraint, an aeroelastic

rotor model expressed in terms of mass, damping and stiffness matrices (for

hover only), a modal representation of a dynamical structure, in-plane and out-

of-plane bifilar absorbers, an anti-resonant isolator, and an impedance model
of an aeroelastic rotor for hover or forward flight. Higher harmonic control

is modeled by an externally derived transfer matrix relating hub forces and

moments to swashplate inputs.

2.4 Comprehensive Analytical Model of Rotorcraft Aero-

dynamics and Dynamics, CAMRAD

The CAMRAD program was developed in the late 1970's (refs. [10,11,12]). Its

purpose was to provide a computationally reliable and efficient multidisciplinary
dynamic and aerodynamic analysis for the design, testing and evaluation of ro-
tors and rotorcraft. An excellent overview of the program and its applications

is found in reference [23]. The analysis is applicable to general two-rotor air-

craft configurations. The rotor systems allowed include articulated, hingeless,

gimballed, and teetering rotors with an arbitrary number of blades. The rotor

configurations may be single main rotor, main rotor - tail rotor, side-by-side,

tandem or tilting proprotor. The analysis capabilities extend to rotor perfor-

mance, loads, and noise; helicopter vibration and gust response; flight dynamics
and handling qualities; and system aeroelastic stability. The math model also

includes a drive train set of equations which accounts for the engine, governor,

shaft flexibility, and rotor rotational speed degrees of freedom.

The analysiscapabilityis outlined in figure4. The solutionprocess be-

ginswith determining a trim stateinwhich the rotor and airframe motion are

periodic and the controlsfor a specifiedflightcondition are calculated. The

program allows the user to selectvarious trim options based on the usual six
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force and moment equations and an additional power available equation. There

are 26 preset trim options in the code representing flight and wind tunnel trim
conditions.

The transient and flight dynamics solutions are based on quasi-static rotor
solutions. The trim, transient and flight dynamics solution procedures use a

common rotor analysis. The solution of the equations is separated into two

parts based on the assumption that the aircraft motion is quasi-static when

compared with the rotor speed. This assumption allows the periodic rotor

motion to be used for the transient motions of the helicopter as well as the

trim motion. By taking advantage of the frequency separation of the rotor

and aircraft motions, an economical solution procedure is obtained. One part,

therefore, is the periodic, harmonic solution of the rotor and airframe vibration.

The other part is the time domain solution airframe motion including the aircraft
rigid body, rotor speed perturbations, and static elastic deflection of the airframe
and drive train.

In the transient solution the rigid body equations of motion are numerically

integrated for prescribed gusts or control inputs to calculate the nonequilibrium

flight path. In the flight dynamics solution, perturbation of the body motion

and controls are calculated yielding time invariant linear differential equations

for the aircraft rigid body motions. The poles, zeros, and eigenvectors define

the aircraft flying qualities.

Output from the trim, transient and flight dynamics solutions can be pro-

ceased to obtain specific technical discipline output in performance, loads, vi-
bration or noise prediction.

The flutter analysis constructs a linear set of differential equations for all
variables of the aircraft and rotor(s) in order to define the system stability. The

equations may be time invariant as for the axial flow flight conditions or time

variant having periodic coefficients. In the latter case, a Floquet solution is

obtained. Additional capabilities allows the periodic coefficients to be averaged
and quasi-static reductions to be made if desired by the user.

The rotor aerodynamics is based on two-dimensional steady airfoil character-

istics with corrections for three dimensional and unsteady flow effects, including

dynamic stall. Three options of inflow calculation are allowed: uniform inflow,

nonuniform inflow with prescribed-wake geometry and nonuniform inflow with

free-wake geometry. The uniform inflow is based on an empirical model using
momentum theory and includes a linear variation over the rotor disk. The rotor

wake model is ba_ed on vortex lattice approximations of the wake and wake

influence coefficients are calculated for incompressible flow. Rotor/rotor inter-
ference is accounted for as is interference velocities at the airframe. Wake rollup
and distortion effects are included in the model.
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2.5 General Rotorcraft Aeromechanical Stability Pro-

gram, GRASP

The GRASP program (ref. [15]) is an in-house code developed by the AAFD. It

is an outgrowth of the FLAIR code (ref. [24]), and the problems associated with
modeling a bearingless rotor system and elastic blades. The GRASP code was

developed to apply advanced modeling and finite-element techniques to com-

plex hub and blade behavior. In particular, blade/root kinematic modeling has

been enhanced greatly by GRASP. The GRASP code is described as a hybrid

between between finite element codes and spacecraft-oriented multi-body pro-

grams. Using this combination, the coupling constraints at the blade root are

general and can a_count for large rotations, time dependency, and nonlinear-

ities. The substructuring in GRASP is extensive and allows the the user to
build up complex structures from a reasonably small library of elements and
constraints. The main structural element in GRASP is the aeroelastic beam

which is an elastic, kinematically-nonlinear, variable-order beam element sub-

ject to inertial, gravitational and aerodynamic loads. The equations of motion

are not explicitly derived but are calculated inside the GRASP code. Although

using small strain theory assumptions, the code development does not make any
small angle approximations or use an ordering scheme to truncate terms. The

analysis capabilities apply only to static nonlinear and linearised dynamic be-

havior. The program does not handle periodic terms and is therefore restricted

to axial flight regimes. The stability problem is described as an asymmetric

eigenproblem where the mass matrix is symmetric but the damping and stiff-

ness matrices may be asymmetric. The mass matrix includes apparent mass

from the air. A simple air mass model using induced inflow dynamics with

uniform axial freestream velocity is used in GRASP.

In order to allow the modeling flexibility required, GRASP has an extensive

executive capability referred to as an _information manager s to control the ex-

ecution sequence and to manage the data structures. The information manager

selects the dimension sise required for each data structure during a run and

efficiently manages the data.

2.6 Second Generation Comprehensive Helicopter Anal-

ysis System, 2GCHAS

The 2GCHAS is a Government-sponsored project which had its origin in the

mid-1970's. It was a response to a need by the Army for a more comprehen-

sive analysis tool to be used by helicopter designers il, the industry and aircraft
evaluators in the Army. The basic concepts for the system were formulated in

a series of competitive predesigns studies(refs. [7,8,911. The predesign studies
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were initiated to define the requirements of the System from the both technol-

ogy discipline and user-interface standpoints. These requirements were later

summarised in reference [25]. The System is divided into two complexes; the
Executive Complex and the Technology Complex. A contract was awarded

to Computer Sciences Corporation to develop the Executive Complex prior to

developing the Technology Complex. The Executive Complex is precedes the

Technology Complex by approximately two years in development. The com-

pleted 2GCHAS is expected to be available to the public in the third quarter

of 1988 after System integration of the CPCI deliveries and as shown by the

schedule chart in figure 5. The public release of the system is referred to as

first level release (FLR). This release will only be for the VAX VMS operating

system. It is the intent of ARTA to continue the code development and support

over a period of time so that advanced technology modules can be added to the

System and to allow the System to be converted to other operating systems.

The Executive Complex is that part of the System which controls the ex-

ecution of the technology analyses, supports the run-time data management,

provides a user interface for input and output, has available a database man-
agement system for I/O storage, and provides utilities for graphic and printed

output of analysis runs. The development of the Executive Complex is accom-
plished in five builds, each of which is of approximately 6 months duration;

the fourth build was delivered to the Project Office in February 1987 and the

final build will be delivered in September 1987. The third build, which was

delivered in September 1986, has been installed at the Technology Complex

contractor sites for use in developing the technology software. The project of-
fice will upgrade the technology contractor deliveries after acceptance testing of

the succeeding builds are complete. The schedule for the 2GCHAS development

is shown in figure 5. The Executive Complex line in the figure depicts the time
periods for the five builds.

The Technology Complex is that part of the System which provides the tech-

nical capability to perform particular interdisciplinary engineering analyses of

rotorcraft such as performance, loads and vibration, aerodynamics, stability and
controls , and aeroelasticity stability. This Complex has been divided into six

contractual units called computer program configuration items (CPCIs). Four

CPCIs were awarded in January of 1986 and two were awarded in January of
1987. All six contracts will be completed in the second quarter of 1988. The

finite element library will be developed McDonnell Douglas Helicopter Com-
pany, the hierarchical assembly procedure and the maneuver and trim solution

processes will be developed by Kaman Aerospace Corporation, the linear anal-

ysis and eigensolutions will be developed by Advanced Rotorcraft Technology,
Incorporated, the aerodynamic capability will be developed by Boeing Vertol

Company, the technology discipline output processing will be provided by Siko-

rsky Aircraft Corporation, and input processing and coordination capability will
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be provided by Sterling Software Incorporated. Most of the CPCIs' software
delivery will be based on a two-build schedule as shown in figure 5.

The technology basis of the Technology Complex is a finite element, time

domain assembly process with solution algorithms available for maneuver, pe-

riodic response, trim and eigenanalysis. The eigenanalysis extends to both con-

stant and periodic coefficient equations. The assembly process is hierarchical
with provision for modal synthesis, multipoint constraints, coordinate system

transformations, singlepoint constraints, and multiblade coordinates. The aero-

dynamic computational capability includes the induced velocities and airload
distributions. The induced velocities are calculated from momentum theory

with vortex-element, prescribed-wake methods in both axial and forward flight

regimes. The airloads are based on the lifting line strip theory approach. The

solutions to maneuver, trim or eigenvalue equations of motion are postprocessed

to provide the appropriate engineering discipline results in such areas as loads,

performance, stability, etc.

The analysis flexibility of 2GCHAS is depicted in figure $. The Technology

Complex operations move from left to right beginning with the user model

building activities. The fundamental calculation to be performed is the trim

solution. Once the trim state has been established, the user may proceed to

the transient (maneuver) calculation, perturb the equations of motion or go
directly to the last column to obtain the desired engineering discipline data
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from postprocessing the solution state. If the perturbed equations are used,
the user may perform either an eigenanalysis or a transient analysis of the

linearised equations. Again, after solving the equations, the user selects the

appropriate engineering discipline output form for the data and displays the

results on the screen, plotter, printer or external file. The Executive Complex

assists the user in identifying the path through the various solution algorithms

via a user language; allows the user to store, recall, restart or checkpoint data
along the path; aids the input preparation processes; provides utilities for the

graphic interface; manages the data and data structures during the runtime; and
provides diagnostic and status information during the run. The figure depicts
the executive compiling a user command in a sequential fashion.

3 Comparisons of Capabilities

For the most part, the programs discussed in this paper attempt to be %om-

prehensive _ in function. This comprehensiveness can be interpreted in various

ways, however. A program can be comprehensive by addressing each of the
technical disciplines indicated in table 1. The program might also be deemed

comprehensive if its modeling capability is general such as that found in finite

element codes. Such a code would allow the math models to range from very

simple to quite detailed thereby allowing the models generated to be applica-

ble to preliminary design, detailed design and research studies. Comprehensive

codes require executive services support which involve data base management,
user language features, graphics interfaces, and efficient modular execution of

program segments. The tables presented in this section attempt to address
comprehensiveness from all of these standpoints.

In table 1 the codes are compared with respect to technical disciplines. The

asterisk indicates the capability is presently in the code. The exception is the
2GCHAS code where the capabilities are not yet present but are under con-

tract. Only the CAMRAD directly produces results in each discipline. Even

the 2GCHAS code has deferred the acoustic predictive capability from the first

set of its contracts. The C81 code has recently been enhanced to include an opti-
misation capability. The SIMVIB base program is strictly a vibration reduction

design tool. However, the other analyses in the package provide capabilities in

the areas of loads, aeroelastic stability and performance. GRASP is restricted

to stability applications and axial flight regimes. The DYSCO code has empha-

sised the solution to the governing sets of equations and has not been tailored
to the specific engineering disciplines. The DYSCO code solves for both trim

and transient response.

In table 2 the executive features of the codes are compared. The presence
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Code

Table I: Comparison ofAnalysis Capabilities

Stab.

and

Control

Per- Loads Aero-

form- and elastic

ance Vib. Stab.
it * at

at at at

at *

at at

Aero=

dynam.

at AF

* AF

AF

AF

A

at AF

C81

CAMRAD

DYSCO

SIMVIB

GRASP * *

2GCHAS * * *

A = Axial flight, F = Forward flight, * = capabilitypresent,

Other

Opt

Acst

Dis

Opt ----optimization,Acst = acousticsprediction,Dis = dissimilarblades
allowed

of the features is an indicator of ease of use and services available to user dur-

ing an analysis run or set of runs. Two approaches have been used. Codes

such as SIMVIB and C81 have attempted to make maximum use out of existing
software to perform segments of the overall analysis. SIMVIB is described in

figure 3 and couples the various wake geometry, inflow dynamics and modal

blades codes together via external files. C81 relies on external codes to generate
blade modes, provide graphic output and perform optimization tasks. The C81

code has automated the program coupling procedures by providing assistance to

the user in recompilations and JCL declarations. The CSl graphics capability

is provided by its own specialised plotting programs and by an interface with
the DATAMAP package (ref. [18]). The remaining codes attempt to have all

technical capabilities internal to their system. The CAMRAD program has an

input preprocessor and has few other executive services. Its graphics capability

is restricted to a line printer two dimensional printouts. The user must pro-

vide his own interface to an existing graphics programs. The DYSCO program

provides an extensive input processor and an environment wherein elements,
analyses,and output can be easilyadded to the system. A database exists

to the extent that restartsand data modificationscan be easilyperformed. A

graphics capabilityisnot currentlya part ofthe system. The GRASP code has

a sophisticatedinformation manager builtintothe system which automates the

dimension space needed from user inputs.Italso provides servicesto the user

in input preparation. Ituses an internalprogram language to set procedures

foranalysisexecutions.Graphics are not includedin the system. The 2GCHAS

code has the most extensiveexecutive.The executiveprovidesa robust runtime

database which can be saved, edited,and restarted. The executive traps all

program crashesand provides an environment within 2GCHAS forinput prepa-
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Table 2: Comparison of Executive Features

Code Executive Data Base Graphics Coupled System

C81 Auto JCL

CAMRAD Prepro cessor

DYSCO File R/W
SIMVIB File Sys

GRASP Info. Mgr.

File I/O
File I/O

File I/O
File I/O
Runtime

Ext/Int
Some

External

2GCHAS User Lang/Procs Runtime Internal *

Programs

Programs

* = capabilitypresent

ration,graphics,and output control. The executive provides a user language

to controlthe runtime execution.Alternatively,the user may write procedures

in the user language or modules in FORTRAN which can executed within the

2GCHAS environment. The graphicscapabilityislinkeddirectlyto the DI-3000

commercial software package.

In table 3 the modeling capabilitiesof the programs are compared. All

programs exhibitthe abilityto model a wide range ofthe currentrotortypes and

at two leastrotorswithin the model. The finiteelement-based codes (DYSCO,

SIMVIB, GRASP, and 2GCHAS) have the potentialfor modeling an arbitrary

number of rotors,even though the practicalinterestof one or two rotors is

sufficient.In addition,the finiteelement codes are capable orhave the potential,

given an appropriate element library,of modeling a singleblade as well as an

arbitrarynumber of blades within the rotor system. The C81 and CAMRAD

codes have a limiton the number blade modes which be used; the C81 code

can include up the 11 modes and the CAMRAD code can include 10 bending

modes and 5 torsionmodes. In allcases,the airframe component can be elastic

although greatermodel detailisaccounted forinthe finiteelement model. Other

aircraftcomponents can be modeled as required by finiteelement codes and

the CAMRAD codes provides the capabilityto model engine and transmisaion

systems dynamics. Redundant load paths can be accounted for in the finite

element codes provided the beam element properly accounts for axialextension.

The fixedmodel programs (C81 and CAMRAD) providethe best aerodynamic

modeling capabilities.In terms ofwake geometry modeling and accounting for

aerodynamic interferencesthese programs' capabilitiesare more mature and

wellmatched to the analyses. The externM program coupling of SIMVIB also

provides a similarlevelof aerodynamic modeling. The 2GCHAS will be the

firstfiniteelement code which attempts to emulate thislevelof aerodynamic

modeling. Surprisingly,only CAMRAD and SIMVIB currentlytiethe nonlinear

inflowcalculationtoa wake geometry and induced velocitycalculationiteration.
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Table 3: Comparison of Mathematical Model Features

Analysis C81

Rotor Types abghst
No of Rotors 2

No of blades > 2

Blade Modes II

Elast Airfrm Modal

Components

Redund Ld approx

Inflow Dyn
Aero Inter *

Free Wake

Non inflow

CAMRAD DYSCO SIMVIB GRASP

aghst abghst abghst abghst
2 4 * *

>--2

2GCHAS

abghst

>_I >-I >-3 >-I

10/5 5/5/3 FE FE FE

Modal FE/mod FE FE FE
FE FE FEEng/_ns FE/mod

FE FE FE FE

a = articulated, b = bearingless, g -- gimbalhd, h -- hingelees, s --
semiarticulated, t = teetering, FE = finite element, * = capability present,

mod = modal, 5/5/3 = flap/lag/torsion modes, 10/5 -- bending/torsion modes

In table4 the structuralmodeling buildingcapabilitiesaresummarised. The

modal analysiscapabilityisnot internalto allcodes. The C81 code uses a spe-

ciallydeveloped Myklestad code for developing its modes and only DYSCO

requiresthe user to provide his own modes. A multiblade coordinate transfor-

mation isprovided by thosecodes which perform an aeroelasticstabilityanalysis

in forward flight.Model building using a hierarchicaltree isallowed to some

degree inDYSCO and to a generallevelin GRASP and 2GCHAS. General kine-

matic constraintswhich couple the elements or components may be nonlinearin

only the GRASP code. Limited nonlinearcoupling isaccounted forinthe CAM-

RAD program. Itwillbe necessary for the other finiteelement codes to adopt

a Lagrange multiplierscheme which willallownonlinearcoupling.The GRASP

provides a screw coupling capabilitythat accounts for very largedisplacements

or rotationssimilarto those which occur in roboticswhere multi-body mecha-

nisms must be accounted for.Singlepointconstraintsor displacementboundary
conditionsare provided by allthe programs.

4 Published Results

The purpose of thissectionisto providesome insightintohow a particularcode

has performed when compared to experimental results.In most casesonly one
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Table 4: Comparison of Transformations Allowed

Transform

Modal

MBC

Tree Sub

Nonlinear

SPC

C81

see a
$

CAMRAD DYSCO SIMVIB GRASP 2GCHAS

Int. Ext. G400 Int. Int.

Some

Some *

• = capability

Some Some

_resent, a = DYNAM06

resultfrom the literaturefor each code ispresented. An in-depth look at how

the codes have performed inthe areaofpredictingrotorloadshas been provided

in reference[26].

4.1 C81 Correlation

The AATD sponsored threeeffortsto determine the validityof C81. The ref-

erence [27]effortwas conducted by Bell Helicopterusing AH-1G data and the

1976 versionof the program. Since the presentrotor analysisin C81 isnearly

identicalto the 1976 version,and sincethe Myklestad analysisat that time was

validfor teeteringrotors,the resultsshown infigure7 are representativeofthe

currentprogram. The flightconditionrepresentedinthe figureisfor a forward

velocityof129 KTAS usingdata counter615 ofthe 8319 pound AH-1G aircraft.

The analysisresultsshow that the steady moments do not compare well atthe

inboard stationswith the flightdata. The oscillatoryor peak-to-peak loads,

however, are in much betteragreement. Both the meuured and cMculated re-

sultsare dominated by the one-per-revfrequency content. For the one-per-rev

case the outboard comparisons are poor. The agreement in the higher-per-rev

distributionsismuch better.

References [281 and [29] document earlier correlation efforts conducted by
contractors other than the program developer. Both efforts were performed

using the 1974 version of the program which was the starting point for the

1976 improved program. Reference [28] describes serious shortcomings in the

program and concludes that accuracy for predictions of H-53 and S-67 heli-

copter characteristics did not exceed that of other analyses which cost less
to run. Reference [29] noted good correlation for trim and performance for
the Messerschmitt-Boelkw-Blohm BO-105 helicopter, reasonable correlation of

main rotor flap bending moments, and poor correlation of main rotor chord
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and shaft bending moments. Di_culties were experienced in attempting corre-
lation of the stability and control characteristics of the BO-105. Some of the

difficulties reported in these references may be due to inexperience of the user,
some on limitations of the Myklestad anedysis, and some on the C81 program

itself. AATD has recently sponsored an effort to improve the Myklestad anal-
ysis for hingeless and articulated rotors. Later versions of C81 have been used

by the Bell Helicopter for in-house correlations with articulated and hingeless
configurations with better results than those presented in these references.

4.2 DYSCO Correlation

As discussed above, a current technology rotor analysis has only recently been
added to DYSCO. The recent enhancement also included a correlation effort

which was limited to rotorcraft performance characteristics. Some of the results

are shown in figure 8. The only other published correlation was a comparison
of ground resonance results using the Floquet stability analysis with the arts,-

lyrical results of Hammond (reference [30] for isotropic and nonisotropic hub

characteristics. The results of the study (ref. [31]) showed exact agreement for
all cases.

The results shown in figure 8 are taken from reference [22] where compar-

isons are made with operational loads survey test flight data (ref. [32]). Three

DYSCO models are used in the comparison. The label, AH-1G, in figure 8
refers to the flight vehicle and the 36 refers to the data counter number in the

flight test. The letter (S) in the label refers the DYSCO model with steady

aerodynamics; the letter (U) refers to the DYSCO model with unsteady aero-

dynamics included; and the letters (BIS) refers to the DYSCO model with rigid

out-of-plane mode and steady aerodynamics. The results for collective control,
fuselage pitch and horsepower are generally good while the cyclic sine and cosine

predictions are poor.

4.3 SIMVIB Correlation

Published comparisons of SIMVIB predictions with test data are limited to ref-

erences [5] and [33]. Reference [5] includes correlations with a one-sixth scale

model rotor system tested in the NASA Langley Research Center Transonic

Dynamics Tunnel with and without higher harmonic control inputs as shown

in figures 9-(a),9-(b),9-(c). Agreement with fuselage accelerations, variation of

blade moments with advance ratio, and radial distribution of bending moments

is good. The prediction of bifilar mass motions shown in figure 9-(d) is excel-
lent, but it should be noted that rotor forces were inferred from bifilar base
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accelerations, not from a rotor aerodynamic/dynamic analysis. A number of

unvalidated applications are also provided in reference [5].

4.4 CAMRAD Correlation

The CAMRAD code has been used extensively in the past few years as an an-

alytical tool in many investigations. These investigations are summarised in
the following applications: hover loading calculations using prescribed wake ge-

ometry (ref. [34]), lateral flapping calculations using nonuniform inflow and
free wake geometry (ref. [35]), influence of unsteady aerodynamics on hingeless

rotor ground resonance (ref. [36]), XV-15 tiltrotor performance, loads, and sta-

bility (ref. [37]), XH-59 ABC performance and loads (ref. [38]), fully consistent

coupling with unsteady aerodynamics finite-difference calculations of advancing

tip transonic flow (ref. [39]), body-incluced flow effects on rotors (ref. [40]),

hingeleu rotor ground-resonance stability in forward flight (ref. [41]), hingeless

rotor performance and stability in hover (ref. [42]), advanced technology LHX

rotor performance (ref. [43]), V-22 tiltrotor model whirl flutter stability (ref.

[44]), performance, loads and stability calculations for design of a high speed

tiltrotor (ref. [45]), and correlation with flight test measurements of trim, blade

loads, and blade airloading (ref. [40]).

The CAMRAD code has obtained wide acceptance due to its comprehensive

analysis capability and consistent mathematical basis. The code development
uses prudent compromises in modeling capability and solutions in order to com-

pute performance, loads, trim states, transients, and stability characteristics ef-

ficiently. It has been used as a testbed for examining the improvement possible
when the analysis is coupled via file transfer with another program which cal-
culates the unsteady rotor flow from a three dimensional, full potential, finite

difference code from computational flow dynamics formulations (ref. [39]).

Results from reference [46] are used to indicate thepredictive ability of

CAMRAD when compared with the SA 349/2 helicopter flight-test data. In

the report, the capability to model the aerodynamic behavior is given primary
attention. The results selected for presentation here will emphasise the dynamic

behavior. Figure 10 shows the results for the flatwise and edgewise bending mo-
ments and torsion moment for s blade where the rotor is subject to a high speed

- low thrust flight condition. The results presented in reference [46] ranged over
several blade stations with the analysis and flight test data correlating better

as radial station moves inboard. The results in figure 10 are for a blade station

close to midspan. The figure illustrates that the analytical results are converged
st six modes. The flatwise moment distribution around the rotor asimuth gives

good correlation with the test data; the edgewise moments are not well predicted

on the advancing side of the rotor disk. This error is attributed to the corn-
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pressibility effects not accounted for in the aerodynamic model. The torsional

moment predictions are in reasonable agreement with test data. Convergence
occurs with just two torsion modes required.

A low speed - low thrust flight condition case is also presented in reference

[46]. Those results are duplicated here for variation of the coefficient of lift as

a function of blade azimuth. At low speed the rotor wake stays in the vicinity
of the blade and a strong blade-vortex interaction is obtained. A detailed wake

geometry is needed to obtain good correlation for aerodynamic loads. As shown

in figure 11, correlation to the wind tunnel data improves with each improvement

to the wake geometry model for all blade stations. The uniform inflow analysis

predicts the trends of lift variation around around the rotor azimuth but not the

details. The lift prediction is improved when the prescribed wake model is used.

However, the free-wake model predicts the lift behavior very closely. It is in the

axea of aerodynamic modeling that CAMRAD excels. Even though lifting line
theory is used, care has been taken to incorporate a free-wake geometry iteration
with rollup and near and fax wake effects included as well as corrections for blade

tip, yawed flow, nonuniform inflow, dynamic stall, ground effect, and unsteady
lift and moment.

4.5 GRASP Correlation

The GRASP code has been recently completed and the validation efforts are

underway. Extensive comparisons with the flap-lag-torsion aeroelastic stability

experimental results presented in reference [47] are in progress and will be re-

ported in reference [48]. Reference [49] compares the GRASP solutions with
theoretical results of Ormiston [50] for the ground and air resonance stability

of a coupled rotor-fuselage. Good agreement was obtained for these results.

Also in reference [49] the GRASP code is compared with a basic experiment

carried out at Princeton University (refs. [51,52,53]). Typical results of this

latter comparison axe shown in figure 12. The beam is a slender, nonrotating,
cantilevered, uniform beam with a tip mass. The load angle 9 is varied from 0

to 90 ° at the beam root. These results show excellent agreement between the

GRASP predictions and the experimental data for both the static deflection

and the first flatwise and edgewise frequencies.

4.6 2GCHAS Schedule

The 2GCHAS code is under development. The first public release of of the code

is scheduled for the third quarter of 1988 as shown in fire 5. At that time, vali-

dation efforts will be initiated to qualify the accuracy of the integrated System.
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opment contractors will perform limited validation studies for their software
contributions. The results of these initial validation studies win be available

with the System document.

5 Concluding Remarks

The government's influence on interdisciplinary analysis software has been re-
viewed over the past decade. As a result of this involvement several significant
advancements have been noted.

1. Both the government and the industry codes have become broader

in scope and more consistent in the theoretical development. This is

evident in the CAMRAD, GRASP and DYSCO codes presently and
is anticipated for the 2GCHAS code.

2. New code development for interdisciplinary analysis requires an ex-

ecutive portion of the code to allow modular development and execu-
tion of the code subunits. 2GCHAS will have an extensive executive

system. In addition, the other five codes discussed in this paper have
addressed this feature to some extent. Even the oldest code surveyed,

C81, recently underwent major modifications to allow a modular ex-

ecution of its subsystems.

3. The trend in subunit development is to have all subprograms operate

entirely in the executive environment. 2GCHAS, GRASP, DYSCO

and CAMRAD are examples of this type of executive. C81 runs in

an environment that appears to the user to be a single executive,

but that executive actually runs up to eight separate job steps. The

SIMVIB code uses a suite of independent programs which are coupled

only by data files.

4. The structural modeling capability now exists to couple substruc-

tures. This capability is most easily incorporated in finite element

based codes. The capability is best demonstrated in the GRASP code

which combines finite element and multi-body coupling techniques.
It is also demonstrated in the DYSCO and SIMVIB codes which

include a linear Hurty coupling scheme for substructures. In these

cases the subsystems being coupled do not have to be finite elements

but must be consistent displacement-type math model formulations.

The approach allows maximum flexibility in matching model details
in the airframe and rotor system and computational efficiency when

the finite element level of detail is not necessary. 2GCHAS will in-

clude the Hurty capability initially and then move to a more general

approach including nonlinear coupling at a later date.
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5. The inability to predict the rotorcraft aerodynamic environment and

the time-varying aerodynamic loads on the rotors is perceived as

the greatest impediment to good correlation between theory and

test. Presently, aerodynamic modeling involves predicting the aero-
dynamic loads on a specific component with limited interference ef-

fects from other components accounted for. A general, interactional

formulation is not available. There has been limited experience in

interfacing advanced aerodynamics methodologies with comprehen-

sive models. Comprehensive analysis methods with highly consistent

dynamics components, reliable solution techniques and well docu-

mented interfaces to their aerodynamics analysis features should pro-

vide excellent test beds for advances in aerodynamics modeling. The

mating of differencing schemes for unsteady aerodynamics of tran-

sonic tip flow to CAMRAD (ref. [39]) is an effort of this type. The

2GCHAS may provide additional impetus to generalising aerody-

namic approaches in software applications.

6. Validation of comprehensive codes is a massive, long term, and neces-
sary undertaking. Comparisons with experimental data, other meth-

ods, closed form solutions and years of use in a production environ-

ment are necessary to build confidence in a design tool. The newer

comprehensive codes will need continued government funding for val-

idation studies to be performed to show both the areas acceptance

and the areas where more rigorous development work must be done.

7. The modular component development and executive environment for

multidiscipline analysis is in the infant stage and sufficient experience
is not available to know how much of a boon this will be to research

and to advancing the state of the art. However, it should at least

be an asset to analysis and design problems and simplify and speed
information and software transfer.

8. Wide distribution of government-sponsored software and theoretical

developments should continue to be encouraged if the rotorcraft in-

dustry is to benefit fully from them. The importance of having widely

accepted analysis tools available to industry and academia has been

demonstrated by NASTRAN and other codes. Analyses and research
have been conducted with these codes at manufacturing sites and

universities. In addition to providing the immediate results for the

research, the codes and their theoretical development have provided

a basis for knowledgeable information exchanges. One form of the

information exchange is to provide better prepared students from

universities to the industry.

9. The government funding has been essential to the effort since the

multidiscipline development requires broad areas of expertise and

years of commitment.
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SUMMARY

Theoretical and experimental developments in the aeroelastic and aeromechanical

stability of helicopters and tilt-rotor aircraft are addressed. Included are the

underlying nonlinear structural mechanics of slender rotating beams, necessary for

accurate modeling of elastic cantilever rotor blades, and the development of dynamic

inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability

applications. Analytical treatment of isolated rotor stability in hover and forward

flight, coupled rotor-fuselage stability in hover and forward flight, and analysis

of tilt-rotor dynamic stability are considered. Results of parametric investiga-

tions of system behavior are presented, and correlations between theoretical results

Paper presented at the NASA/Army Rotorcraft Technology Conference, NASA Ames

Research Center, March 17-19, 1987.
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and experimental data from small- and large-scale wind-tunnel and flight testing are

discussed.

I. INTRODUCTION

Aeroelastic stability, like other rotorcraft technologies, is a broad and

complex subject. Extensive research has been conducted during the last 20 years

prompted by the emergence of new technical challenges, as well as the establishment

of Army research organizations and the NASA-Army agreement for cooperative

research. Therefore, it is appropriate to survey the accomplishments during this

period. The scope, depth, and technical sophistication of the work to be discussed

have greatly increased. We now have an established and sound foundation and an

active research program. The purpose of this survey is to present a comprehensive

overview of Army-NASA research in rotorcraft aeroelastic stability accomplished over

the past 20 years, to assess and summarize the major contributions of government

research, and to identify needs and opportunities for future research and

development.

It is of interest to define the state of the art in rotorcraft aeroelastic

stability before 1970 as a background for this survey. Such a description should

serve to highlight how far technology in this area has progressed. An outline of

the key technology areas for this description is given in table I. Before 1970,

several research compound helicopters had extended rotorcraft flight-test experience

to high-speed, high-advance ratio conditions. Examples of blade-stability problems

were encountered at high advance ratios. However, as emphasis on high-speed rotor-

craft shifted away from compound helicopters and toward the tilt rotor, these

problems were not vigorously pursued. For conventional articulated- or teetering-

rotor helicopters operating at moderate flight speeds, aeroelastic stability was not

a significant concern. Although experience with the XV-3 tilt rotor had exposed

significant potential for aeroelastic stability problems, only limited research was

devoted to these problems.

The rotorcraft situation changed rather substantially as 1970 approached.

Interest in the hingeless rotor intensified during the late 1960's, but vehicle

development programs, including the AH-56A, began to expose the aeroelastic complex-

ities of such systems. The hingeless-rotor YUH-61A UTTAS prototype did exhibit

acceptable aeromechanical stability characteristics but was not selected for produc-

tion. Even more advanced but structurally complex configurations such as the bear-

ingless rotor were being explored. With the advent of the XV-15 program, the uncer-

tainties about tilt-rotor aeroelastic stability took on much more urgency.

In terms of rotor-blade stability, the pre-1970 era dealt primarily with

bending-torsion flutter, including wake-excited flutter. In the post-1970 era,

these phenomena, together with the unique properties of hingeless- and bearingless-

rotor configurations, opened up a new class of problems in aeroelastic instabil-

ity. These problems were associated with the poorly understood structural dynamics
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of cantilevered rotor blades. With the availability of Floquet theory, research in

the post-1970 period also began to deal with the long standing problem of forward-

flight aeroelastic stability.

For rotating-beam structural dynamics, the metal bladed-articulated rotors of

the pre-1970 period could be quite adequately handled with the equations of linear

beam theory and isotropic material properties. With the advent of hingeless and

bearingless rotors and composite materials, rotor-blade structural dynamics became a

complex nonlinear problem.

Unsteady aerodynamics theory for rotor-blade flutter in the pre-1970 period was

relatively standard, based on two-dimensional Theodorsen and Loewy theories. In the

post-1970 period, efforts were made to extend aerodynamic theory to include three-

dimensional effects, dynamic inflow for simplified low-frequency aeroelastic stabil-

ity, transonic tip aerodynamics, and dynamic stall effects.

In coupled rotor-body dynamics, the pre-1970 era dealt mainly with classical

ground resonance of articulated rotors. The post-1970 period of hingeless rotors

brought with it the complexity of aeromechanical instability, both on the ground and

in flight, with greatly increased complexity owing to the importance of

aerodynamics. In sum, the post-1970 era presented a very significant expansion of

technical issues facing the aeroelastician.

The objectives of research and development on rotorcraft aeroelastic stability

are to ultimately meet the needs of the rotorcraft user. For the user, either

military or civilian, this means improving rotorcraft capability--for example,

performance, speed, maneuverability, payload-range, and reliability--as well as

reducing acquisition, operating, and maintenance costs. With respect to aeroelastic

stability, this translates into reducing development cost and risk for improved

rotorcraft and enabling the designer to exploit new technology with minimal risk of

unforeseen aeroelastic instabilities. Without a firm technology base for aeroelas-

tic stability, the designer may be forced to adopt a more conservative design of

lower performance, or excessive testing may be required during development, thereby

adversely affecting cost and schedule. Even more serious, an unexpected instability

encountered during flight testing could seriously disrupt the schedule, cause major

cost overruns, or even Jeopardize the program.

The success of research and development to meet the objectives outlined above

depends in part on the effectiveness of the approach employed. The success of the

Army-NASA efforts in this field can be attributed in part to an approach that

includes {I) developing a thorough understanding of the structural dynamics, aerody-

namics, and aeroelastic stability characteristics of a wide variety of rotorcraft

components and systems; (2) developing and validating improved theoretical analysis

methods to predict stability; and (3) developing design approaches and concepts that

eliminate or minimize the potential for aeroelastic instability.
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Understanding dynamic phenomena can be achieved through parametric analytical

studies or exploratory experimental investigations. Since understanding a dynamic

system is often synonymous with being able to represent it mathematically, the

derivation of analytical models, comparing them against measured data, and carefully

studying and reconciling the results is a valuable part of the process. For complex

physical systems, breaking the system down into a series of simpler problems is

often essential to get to the core of the problem. Ultimately a thorough

understanding of aeroelastic stability phenomena is essential to avoid problems in

new designs and to mimimize design compromises necessary to avoid instability.

Development of theoretical prediction methods is a key part of aeroelastic

stability research. These methods permit the researcher to apply general knowledge

in a precise way and ultimately equip the designer with concrete design tools.

Developing analysis methods involves basic research in the subdisciplines of aero-

elastic stability: materials, solid mechanics, numerical analysis, and further

subspecialties. Validation of prediction methods is also essential. Developing

analyses and computer programs in a rigorous way is a very exacting process, but

success can never be determined nor is a program of much value unless it can be

adequately validated. Done properly, validation can be as demanding as development

of the theoretical analysis.

To be fully effective, experimental tests must be carefully planned to take

into account the specific objectives of the validation. The experiment should be

designed to eliminate phenomena not germane to the correlation; moreover, the physi-

cal properties of the model must be accurately determined. Careful planning will

insure that proper interpretation of the correlation between theoretical and experi-

mental results can be made.

Finally, satisfying research objectives also involves identifying means to

forestall potential aeroelastic instability, whether through proper design prac-

tices, alternative design approaches to avoid problems, or generating concepts that

may eliminate such instabilities.

This survey is intended to cover aeroelastic stability research in a broad

sense, from the development of analysis methods to their effect on the development

of flight vehicles. The material is organized in the following manner. Analysis

methods are treated first in section 2, focusing on the development of equations for

the prediction of rotorcraft aeroelastic stability. Included is a detailed discus-

sion of underlying theory of kinematics and solid mechanics for rotating elastic

beams, unsteady aerodynamics pertinent to rotorcraft aeroelastic stability (includ-

ing dynamic inflow), and a limited treatment of solution methods used in aeroelastic

stability analysis. The analysis methods section includes results of experimental

investigations to validate basic theories for beam structural dynamics, unsteady

aerodynamics, and solution methods. Experimental investigations or correlations of

aeroelastic stability are not included.

In section 3, information about the aeroelastic stability characteristics and

behavior of rotorcraft is surveyed. This includes results of parametric analytical

investigations, experimental testing, and correlations to validate prediction
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methods. The material is organized in order of increasing complexity of the physi-

cal system, beginning with stability of a single flapping blade up to fully coupled

rotor-body dynamic systems. Section 4 surveys the experience gained in the design

or development of specific rotorcraft systems from the point of view of how aero-

elastic stability technology affected the development or yielded insights during

design and testing of these systems. The organization of sections 2-4 necessarily

leads to some overlap or duplication, for some research efforts naturally span two

or even more of these sections. Finally, the results of the work surveyed are

summarized, and the contributions of Army-NASA research in this field are

assessed. Recommendations for future research are also provided.

A few comments are in order regarding this survey. It was intended that Army-

NASA research contributions be emphasized in the material discussed herein. In

order to provide perspective and technical continuity, selected non-government

research and development efforts have been included where deemed appropriate. While

it is hoped that all relevant government contributions have been accounted for, this

survey is not complete for the field of aeroelastic stability as a whole. Further-

more, since the volume of work in the field is considerable, the treatment in the

survey is necessarily limited in depth and the reader should refer to the references

for more detail.

Mention is also in order regarding the distinctions between government and

non-government research. For the purposes of this paper Army-NASA contributions

include research and development conducted by the four directorates of the U.S. Army

Aviation Research and Technology Activity (the Aeroflightdynamics Directorate

(AFDD), the Propulsion Directorate, the Aerostructures Directorate, and the Aviation

Applied Technology Directorate (AATD)); the NASA Ames, Langley and Lewis Research

Centers; and academic or industry research supported by these government organiza-

tions. In the case of the Aeroflightdynamics Directorate this includes a number of

investigations sponsored Jointly with the Army Research Office. The material

included herein but not derived from government or government sponsored efforts is

denoted by an asterisk entry in the reference list.

2. ANALYSIS METHODS

This section deals with the development of analysis methods for calculating the

aeroelastic and aeromechanical stability characteristics of rotorcraft including

formulation of equations of motion to model aeroelastic stability behavior. This

involves research in fundamental solid mechanics, structural dynamics, materials

properties, rigid-body dynamics, and unsteady aerodynamics. This section also deals

with the development of mathematical methods to solve the aeroelastic stability

equations.
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STRUCTURAL DYNAMICS

Rotorcraft structural dynamics encompasses the mechanics of both rigid and

flexible bodies generally used to model the structural, inertial, and mechanical

characteristics of a rotorcraft or its components. The equations are useful for

various rotorcraft applications, but here we focus on their use in aeroelastic

stability analysis. This section will address the evolutionary development of

rotorcraft equations, primarily the equations of motion for rotating elastic beams

used in modeling the rotor blades and equations for coupled rotor-body systems

including both helicopters and tilt-rotor aircraft.

It is a given among rotorcraft researchers that because of the complexity of

the flow fields, an adequate description of rotary wing aerodynamics is well beyond

the current state of the art. Because the mechanics of rotating structures is

considerably less difficult than the aerodynamic problem, it is sometimes assumed

that rotorcraft structural dynamics is an exact science. However this is not the

case and the material presented below will describe the issues that researchers are

dealing with.

Rigid-Blade Equations

Early rotor-blade and rotorcraft analyses usually treated both hinged and

cantilever elastic blades as hinged, rigid blades for the purposes of aeroelastic or

aeromechanical stability. In the case of articulated rotor blades this is appro-

priate for many problems. For cantilever hingeless rotor blades, the hinged, rigid

blade represents a greater degree of approximation. Nevertheless, when the blade

bending flexibility is simulated with a rotational spring placed at the hinge, the

resulting equations may be adequate for many applications. The equations are easier

to derive, and the solutions can be computed much more economically. The approx-

imate hinged-rigid-blade model has been widely used and served as a very effective

means to initiate more refined analyses of elastic cantilever blades. The rigid-

blade equations are also valuable when insight into dynamic behavior is sought.

In contrast to structural dynamics of elastic rotor blades, the equations of

motion describing the mechanics of hinged-rigid blade models are well defined, even

though the algebra can become very involved when many degrees of freedom are

included. The principal issue in deriving approximate hinged-rigid-blade equations

is the selection of the hinge geometry that will best simulate the elastic blade.

The development of the hinged-rigid-blade models, their relative accuracy in repres-

enting elastic blades, and the results of aeroelastic stability investigations based

on such approaches will be covered under Flap-Lag Stability in section 3.

Development of Elastic-Blade Equations

The fundamental basis for rotor-blade equations of motion, and one of the key

topics in rotorcraft aeroelastic analysis, is the structural dynamics of rotating
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elastic beams. Over the last 20 years, extensive Army and NASA efforts have been

devoted to the development of suitable equations to describe the elastic bending and

torsion of rotating cantilever beams. Much of this effort has been directed toward

the analysis of advanced hingeless and bearingless rotor blades. Although these

mechanically simple configurations offer considerable benefit for rotorcraft, they

also present a significant challenge for the structural dynamicist. The lack of

hinges results in moderately large bending and torsional deformations of cantilever

blades during rotorcraft operation. From a structural dynamics point of view these

moderately large deformations give rise to geometrically nonlinear structural and

inertial terms in beam equations, even when the material properties are linear and

the strains are small.

In contrast to hingeless rotor blades, articulated rotor blades could usually

be treated quite adequately with linear equations. Since the middle 1950's, the

standard equations for this class of problems were the classic Houbolt and Brooks

equations for combined flapwise bending, chordwise bending and torsion of twisted,

nonuniform rotor blades (ref. I). Although these equations are linear, they contain

the geometrical stiffening, owing to centrifugal force, normally considered a non-

linear effect. These equations were the starting point for much of the subsequent

development of nonlinear equations for elastic rotor blades.

The following sections will deal with nonlinear equations for elastic beams

undergoing moderate deformations, the nonlinear kinematics of deformed beams, non-

linear torsion of pretwisted beams under axial tension, advanced theories for beams

undergoing large rotation and small strains, bearingless rotor blades, finite-

element formulations, and treatment of composite materials in rotor-blade equations.

Moderate deformation blade equations- As noted above, the accepted standard for

elastic-blade equations was the work of Houbolt and Brooks (ref. I). One of the

first attempts at a complete derivation of equations suitable for aereolastic analy-

sis of both articulated and cantilever blades was the work of Arcidiacono, who

developed nonlinear equations for combined flapwise bending, chordwise bending, and

torsion motions of an elastic blade (ref. 2). The final modal equations were lin-

earized for small motions and included a quasi-steady aerodynamic formulation as

well.

The Aeroflightdynamics Directorate initiated research on development of nonlin-

ear elastic-blade equations in order to treat aeroelastic stability of hingeless

rotor blades. Early AFDD research considered the restricted problem of coupled flap

and lead-lag elastic bending of torsionally rigid cantilever rotor blades. Ormiston

and Hodges developed elastic-blade flap-lag equations to extend analysis capabili-

ties beyond the rigid-blade equations (refs. 3,4). Their derivation was based on

Hamilton's principle because of its suitability for complex problems, especially

when the nonconservative aerodynamic forces are included. It also helps in cor-

rectly formulating the internal forces based on strain energy. The resulting

flap-lag equations differed little from the Houbolt-Brooks equations except for a

kinematical variable for axial displacement of the blade, based on nonlinear strain-

displacement relations. The axial variable was eliminated from the equations by

assuming the blades to be inextensible. This assumption neglects axial elastic
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deformation of the blade and expresses axial displacement in terms of lateral dis-

placements; this is the well-known kinematical foreshortening of the beam axis

caused by bending. Points on the beam axis move radially as the blade bends,

resulting in both steady-state and perturbation centrifugal forces and Coriolis

forces. These effects are needed to capture essential nonlinear features of hinge-

less rotor flap-lag stability. Galerkin's method was used to reduce the partial

differential equations to ordinary differential equations in terms of elastic bend-

ing modes.

Friedmann and Tong also developed equations for analysis of flapwise and chord-

wise bending of elastic cantilever rotor blades {ref. 5). Blade-pitch motion was

treated as rigid-body rotation about the blade-root pitch axis and was restrained by

a root spring that represented pitch-link flexibility. Aerodynamic and mass center

chordwise offsets from the pitch axis were included. These equations accounted for

axial foreshortening of the blade but did not include linear flap-lag structural

coupling or distributed elastic torsion deformation along the length of the blade.

Quasi-steady aerodynamic forces were included and these equations were used to study

aeroelastic stability.

One of the most important features of an elastic cantilever beam is the nonlin-

ear coupling between torsion and combined flapwise and chordwise bending. A schema-

tic illustration of the nonlinear torsion produced by simultaneous flapwise and

chordwise bending is given in figure I. This coupling has a very powerful effect on

hingeless rotor blade aeroelastic stability, the precise effects being very sensi-

tive to the detailed structural and geometric properties of the blade. This problem

has stimulated much research on beam theory and rotor-blade equations.

Hodges utilized Hamilton's principle to derive nonlinear equations for coupled

bending and torsion of an elastic rotor blade (ref. 6). The nonlinear kinematical

basis is an extended version of the formulation by Novozhilov (ref. 7). Hodges also

introduced the idea of an ordering scheme to deal with the numerous higher-order

terms that arise when geometric nonlinearities associated with moderate deformations

are included in the equation formulation. The purpose of the ordering scheme was to

simplify the equations by discarding higher-order terms in a reasonably consistent

manner. There are minor inconsistencies in the kinematical equations of reference 6

associated with finite rotation and nonlinear beam kinematics that will be further

addressed below. Hodges also developed a quasi-steady aerodynamic formulation and

applied the equations to a modal analysis of aeroelastic stability of uniform canti-

lever rotor blades that clearly illustrated the significant influence of the nonlin-

ear bending-torsion coupling terms.

One of the early AFDD objectives was to derive a system of nonlinear equations

for cantilever rotor blades that would take the place of the Houbolt and Brooks

equations. In a significant work, which has since become a standard in the field,

and a starting point for many subsequent investigations, Hodges and Dowell derived

the dynamic equations of motion governing coupled bending and torsion of twisted

nonuniform rotor blades subject to arbitrarily applied loads (ref. 8). Hodges and

Dowell used essentially the same ordering scheme as that of Hodges (ref. 6). Both

Hamilton's principle and a Newtonian approach were used in the derivation of the
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structural and inertial terms in the equations of motion. As discussed in refer-

ence 8, the Newtonian approach does not necessarily yield a symmetric structural

operator and although the equations from the two methods are not identical, one set

can be obtained from the other simply by taking linear combinations of the individ-

ual equations. The ordering scheme was carefully applied to insure self-adjoint

structural and inertial operators. Both Hamilton's principle and the Newtonian

method rely on a nonlinear strain-displacement relation that when used in conjunc-

tion with a linear constitutive law, permits the strain energy and force and moment

resultants to be expressed in terms of blade-deformation variables.

The kinematical formulation of the Hodges-Dowell equations is based essentially

on Green strain components, although Almansi strain components play an intermediate

role in the formulation. The strain components were derived from a blade-

displacement field that was in turn based on a deformed blade coordinate transforma-

tion developed by Peters (appendix, in ref. 8). This transformation, based on

reference 9, allowed the inconsistencies in the equations of reference 6 to be

rectified. In this formulation the torsional kinematical variable is defined as the

integral of the torsional component of the curvature vector, a definition that has

been used by only a few other investigators. The final results are given in the

form of partial differential equations, accurate to second order, that include the

effects of precone and cross-section chordwise offsets. These equations have been

the basis for a number of refinements that will be discussed below, as well as for

numerous investigations of hingeless rotor blade aeroelastic stability. Dowell

applied these equations to derive modal equations for blades with radially varying

properties in reference 10.

One of the principal contributions of the Hodges-Dowell elastic-blade equations

was the nonlinear structural operator that properly represented the nonlinear

bending-torsion coupling needed for cantilever blade aeroelasticity. To evaluate

the accuracy of the theory, Dowell and Traybar conducted a series of laboratory

experiments on static deformation and vibration of uniform elastic cantilever beams

with large deflections (refs. 11,12). The Princeton beam data have since come to be

regarded as a benchmark for evaluating nonlinear beam theories. In the experimental

setup shown in figure 2, a 20-in. aluminum cantilever beam with unequal bending

stiffnesses is loaded at the tip with a concentrated mass. As the load angle 6 of

the beam is varied, the weight of the tip mass generates combined flatwise and

edgewise loading that in turn produces a torsional deformation owing entirely to

geometrically nonlinear effects. A comparison of the experimental data with the

Hodges-Dowell theory presented in reference 13 and in figures 3 and 4 validates the

nonlinear theory for moderate deformations. However, for load conditions in which

the bending deformations exceeded the assumptions of the second-order theory, the

correlation was poor. In figure 4, bending deformations as a function of the tip

mass show how the Hodges-Dowell theory breaks down when the bending deflections

become excessive; the flatwise deflection caused by a 5-1b load is 35% of the length

of the 20-in. beam.

Nonlinear structural behavior also has a strong effect on beam-bending frequen-

cies. The fundamental flatwise frequency of the beam when loaded in the edgewise
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direction, e = 0°, is compared with both linear and nonlinear theory in figure 5.

The correlation with nonlinear theory is excellent in comparison with a linear

theory since the static edgewise bending does not exceed moderate deformations.

Closer examination of the correlation as the frequency approached zero prompted

further study of the theory in connection with lateral buckling of slender beams.

Hodges and Peters (ref. 14) found inconsistencies in classic theories of lateral

buckling and developed an improved formula that matched the experimental data shown

in figure 5. In a different comparison for bending frequencies shown in figure 6,

moderate deformation theory is again shown to be inaccurate when large deformations

are encountered.

Hodges and Ormiston modified the Hodges-Dowell equations to include variable

flap-lag structural coupling and quasi-steady aerodynamics, and applied the equa-

tions to investigate hovering rotor-blade aeroelastic stability (ref. 15). The

Hodges-Dowell equations were further extended by Hodges to include additional con-

figuration parameters such as twist, droop, torque and hub offset, and a root pitch

bearing with pitch-link elastic restraint (ref. 16). Galerkin's method was used to

generate modal equations for radially uniform blades without chordwise offsets,

including quasi-steady aerodynamic terms for the hover flight condition. The equa-

tions were very long and complicated partly because of the choice of variables and

coordinate systems and partly because of the explicit appearance of the numerous

configuration parameters. This complexity was one stimulus for later development of

a finite-element approach so that all the parameters could be put into the analysis

in generic form. The analysis was used by Hodges and Ormiston to study the stabil-

ity of hingeless rotors with pitch-link flexibility (ref. 17).

The adequacy of the structural dynamics equations for rotating cantilever

blades was examined by performing in-vacuum vibration experiments on a model rotor

blade having uniform mass and stiffness properties (ref. 18). The equations derived

by Hodges in reference 16 were checked by comparison with the experimentally mea-

sured vibration frequencies, as shown in figure 7.

The elastic-blade equations developed by Friedmann and Tong (ref. 5) were

refined by Friedmann to treat moderately large deformations, and therefore, include

nonlinear bending-torsion coupling in the structural operator as in the Hodges-

Dowell equations (refs. 19,20). The resulting equations included distributed blade

torsion in addition to rigid-body blade root pitch motion, linear flap-lag

structural coupling, precone, and cross-section chordwise offsets. More refined

equations including blade droop and aerodynamics for forward flight conditions were

used for forward flight stability investigations by Friedmann and Reyna-Allende

(ref. 21).

In a subsequent development, Rosen and Friedmann undertook an extensive

re-derivation of the nonlinear equations for moderate deformation of elastic rotor

blades based on the assumption of small strains and finite rotations

(refs. 22,23). Only the structural operator was presented in the form of explicit

partial differential equations; the inertial terms were left in general form. The

equations were derived using both the Newtonian method and the principle of virtual

work and improved on the previously developed equations in references 20 and 21.
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The blade model was cantilevered at the rotor hub, with precone, pretwist, a

symmetrical cross section, and chordwise offsets of the elastic axis, mass center,

and tension axis. However, several aspects of the development were unusual, partic-

ularly in regard to the absence of warp in the formulation and the absence of cer-

tain well known terms in the torsion equation, as will be discussed below.

The Rosen-Friedmann equations were extended for application to rotor-blade

aeroelastio stability analysis by including a more complete derivation of the iner-

tial terms by Shamie and Friedmann (ref. 24). They also included a derivation of

quasi-steady aerodynamic terms appropriate for the forward flight condition. The

equations were transformed into modal equations by using Galerkin's method and

linearized for use in studies of rotor aeroelastic stability in forward flight. The

same equations were also used by Friedmann and Kottapalli for further applications

studies (ref. 25).

Results obtained from an enhanced version of the Rosen-Friedmann equations were

also compared with the Princeton beam data in reference 26 and typical results of

that comparison are included in figures 3 and 4. The accuracy of the theory is

confirmed by the data and is an improvement over that of the Hodges-Dowell equa-

tions. As pointed out by Hodges in reference 27, the two sets of equations for this

problem are equivalent except that Rosen and Friedmann retained several third-order

terms that become important for configurations in which the ratio of the edgewise to

flatwise stiffness is large compared to unity.

Another derivation of the nonlinear elastic-blade equations was carried out by

Kaza and Kvaternik who developed equations for elastic flap bending, lead-lag bend-

ing, and torsion in forward flight (ref. 28). Kvaternik et al. also developed

flap-lag equations for arbitrarily large precone (ref. 29). The Kaza and Kvaternik

equations in reference 28 are similar to the Hodges-Dowell equations (ref. 8),

except for the following differences. Kaza and Kvaternik proposed two sets of

equations, each with a distinct kinematical variable for torsional rotation. With

the appropriate changes of kinematical variable, these two sets of equations and

those of Hodges and Dowell can be shown to be essentially equivalent. Rather than

use an ordering scheme as did Hodges and Dowell, Kaza and Kvaternik simply

restricted the nonlinearities in the equations to second degree. Finally, Hodges

and Dowell used the axial displacement as a kinematical variable whereas Kaza and

Kvaternik used a kinematical variable defined as the integral of the axial strain

(analogous to the torsional kinematical variable of Hodges and Dowell). These

differences will be discussed below in connection with finite rotation.

Crespo da Silva derived hingeless-rotor-blade equations based on Hamilton's

principle and solved them by the Galerkin method (ref. 30). An ordering scheme was

used in which terms of one order higher in the ordering parameter are retained; thus

the equations are valid to third order. The purpose of this work was to evaluate

the influence of those higher-order terms in the equations. It is found that for

stiff-inplane configurations having low torsional rigidity the influence of higher-

order terms can be important. A typical example from Crespo da Silva et al.

(refs. 31,32), is shown in figure 8, where the dashed lines show blade lead-lag
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damping and frequency from second-order theory (e.g., ref. 15) and the solid lines
give results with third-order terms retained.

Finite rotation- To adequately model helicopter blades in general and hingeless

rotor blades in particular, the elastic deflections must be treated as moderately

large and the resulting equations of motion will therefore be nonlinear. The previ-

ous section described the development of such equations. To derive these equations,

it is necessary to first specify the geometry of the beam both in its undeformed

state and in its deformed state at some particular instant in time. For typical

beam theories, this involves expressing the position of a generic point on the

elastic axis and the orientation of a coordinate frame attached at that point to

adequately specify the location of every point in the beam. It is common practice

in the helicopter rotor-blade literature to evaluate the transformation matrix

between the deformed and undeformed states using a Euler-like sequence of three

successive rotations. For linear mathematical models undergoing small rotations,

the order of rotation does not affect the final form of the transformation matrix.

However, in nonlinear analysis involving moderately large deformations, the final

form of the transformation matrix, and subsequently the derived equations of motion,

will depend on the rotation sequence. When rotations cannot be treated as small

linear deformations they are termed finite rotations. The subject of nonlinear beam

kinematics involving finite rotation is complex and sometimes controversial (e.g.,

Kaza and Kvaternik, ref. 33, regarding the correctness of various derivations of

elastic-blade equations} and has attracted the attention of a number of researchers.

The kinematical basis of the Hodges-Dowell elastic blade equations (ref. 8) was

derived from rigorous representation of nonlinear beam kinematics based in part on

Peters' derivation of the deformed-blade transformation matrix (ref. 9). A similar

set of kinematical relations was derived by Kvaternik and Kaza (ref. 34) and Kaza

and Kvaternik (ref. 28), and led to the differences between the Kaza-Kvaternik

equations and the Hodges-Dowell equations. These differences were addressed by

Hodges et al. as part of a general treatment of nonlinear beam kinematics

(ref. 35). One purpose of that work was to show that the sequence of rotational

transformations used in defining the orientation of the cross section of a beam

during deformation is imaterial. The kinematics of large-deformation geometry for

a Euler-Bernoulli beam was developed, including the transformation matrix relating

the local principal axes in the deformed state to space-fixed Cartesian axes, the

components of angular velocity and virtual rotation vectors, the torsion, and the

components of bending curvature. Nonlinear expressions were developed to relate the

orientation of the deformed beam cross section, torsion, local components of bending

curvature, angular velocity, and virtual rotation to deformation variables. These

expressions were developed in an exact manner in terms of a quasi-coordinate in the

space domain for the torsion variable. The entire formulation was shown to be

independent of the sequence of the three rotations used to describe the orientation

of the deformed-beam cross section. For more common cases in the literature in

which one of the three rotation angles is used as the torsion variable, the result-

ing equations depend on the choice of the three angles. Differences in the equa-

tions, however, were demonstrated to be in form only since the torsion variables in

such cases represent different rotations.
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Following the general treatment of nonlinear beam kinematics of reference 35,

additional work along the same line was carried out by Alkire (ref. 36). In this

work the relationships between the twist variables associated with different rota-

tion sequences, as well as corresponding forms of the transformation matrix, were

studied, and the earlier work was extended to examine the role of blade built-in

pretwist for sequences other than flap-lag-pitch and lag-flap-pitch. In addition to

reiterating many of the conclusions of reference 35, Alkire developed a procedure

for evaluating the transformation matrix that eliminated the Euler-like sequences

altogether. The resulting form of the transformation matrix was unaffected by

rotation sequence. This method, upon further analysis, turned out to be a variant

of the Rodrigues formulation as shown by Hodges (ref. 37).

Another rather unusual approach was presented by Jonnalagadda and Pierce

(ref. 38), and discussed by Hodges etal. (ref. 39). This approach, instead of

using one of the orientation angles as the torsional variable, used the average of

the two angles used by Kaza and Kvaternik (ref. 28). In the special case of moder-

ate rotation, their method is equivalent to the Rodrigues formulation.

A survey of standard methods of representing finite rotation of rigid body

kinematics in relation to nonlinear beam kinematics was presented by Hodges in

reference 37. Orientation angles, Euler parameters, and Rodrigues parameters were

reviewed and compared. These standard methods of representing finite rotations were

applied to general kinematical relations for a large rotation beam theory. The

resulting kinematical expressions were compared for both the standard methods and

some additional methods found in the literature, such as quasi-coordinates and

linear combinations of projection angles. The method of Rodrigues parameters is

unique for both its simplicity and generality when applied to beam kinematics.

Especially for large rotations, as might be encountered in the flexbeam portion of a

bearingless rotor blade, the Rodrigues formulation was shown to be superior to all

other methods.

Tension-torsion coupling- In the development of elastic-blade equations, the

tension force and tension-torsion coupling have attracted considerable attention.

This research expanded to encompass problems of constitutive laws and beam exten-

sional vibrations.

Although the beam equations developed by Rosen and Friedmann (refs. 22,23) were

similar to those previously developed, they omitted two well-known terms in the

torsion equation that are present in work all the way back to that of Houbolt and

Brooks (ref. I). Previous analyses contain (I) a pretwist moment term owing to

combined pretwist and tension and (2) a tension-torsion stiffness term that

increases effective torsional stiffness owing to tension. Furthermore, these terms

are present in the older analyses even for the limiting case of a beam with circular

cross section, although the pretwist moment seems inconsistent since pretwist of a

circular beam is arbitrary. Previous investigators had made use of a curvilinear

coordinate system, which arises because of pretwist; unfortunately, a constitutive

law appropriate for that type of coordinate system had not been used. The equations

of Rosen and Friedmann were carefully derived based both on an orthogonal coordinate

system and, in reference 22, on the same curvilinear coordinate system used by
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previous investigators, except with an appropriate constitutive law. They concluded

that the pretwist moment would not have been present, had previous investigators

used an appropriate constitutive law, and that the tension-torsion stiffness term

should be negligibly small for rotor blades. Although their derivation was carried

out correctly, they assumed warping to be unimportant.

Hodges showed that when the analysis is done correctly and includes warping,

both of these terms are present; but the form of the first term is different from

that found in older works (ref. 40). In the limiting case of a beam with circular

cross section, which does not warp, the pretwist moment vanishes, as expected. More

significantly, however, for thin cross sections (like those of rotor blades) and

with warping included, the pretwist moment reduces to a term very similar to that of

Houbolt and Brooks and previous work as well. This problem was discussed further by

Rosen (ref. 41) and Hodges (ref. 42). Later work by Rosen (ref. 43), based on an

analysis essentially identical to that of Hodges (ref. 40), included warp and exhib-

ited good agreement with experimental results for the pretwist moment of pretwisted

strips.

The above discussion addressed the pretwist moment term. Friedmann and Rosen

discarded the tension-torsion stiffness term, the one showing increased torsional

rigidity owing to tension, based on an order-of-magnitude analysis. This term is

present in Hodges's equations unaltered from the classic form. Petersen analyzed

beam tension-torsion coupling and obtained a different form for this term, one in

which the effective torsional stiffness increases because of tension for warping

beams but does not increase for nonwarping beams (such as beams of circular cross

section) (ref. 44). Why Petersen's analysis turned out this way was unknown at

first. In an attempt to reconcile the analyses of Hodges and Petersen it was found

that the main difference between their approaches was the constitutive law. Hodges

had used the classic strain energy approach based on Green strain, whereas Petersen

had used a strain energy based on Almansi strain. Hodges later showed that a rigor-

ous small-strain analysis would qualitatively confirm Petersen's conclusion regard-

ing the tension-torsion stiffness term (ref. 45).

The influence of the strain-energy function (or constitutive law) had been

encountered before. Hodges found disagreements in the technical community concern-

ing the extensional vibration of rotating beams (ref. 46). Depending on the strain-

energy definition used (whether based on Green, Hencky, or Almansi strain), one

could find significant differences in the trends of extensional frequency versus

angular speed. Thus, it was concluded that without experiments or knowledge of

second-order material constants, it would be impossible to determine the correct

trend. The reason is that the different strain definitions contain terms of higher

order in elongations. Use of Hooke's law implies linearity between some definition

of stress and some definition of strain. The choice of stress and strain defini-

tions is essentially arbitrary. The different choices imply different relationships

between physical stress and strain, thus resulting in different predicted behav-

ior. For Green strain the predicted extensional frequency will increase with rotor

angular speed, whereas for the Hencky logarithmic strain, extensional frequency will
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decrease with rotor angular speed. This is further discussed in Venkatesan and

Nagaraj (refs. 47,48), Hodges (ref. 49), and Kvaternik and Kaza (ref. 34).

It was now clear that a similar situation existed for torsion in the presence

of axial stress. The main reason for the differences between the equations of

Petersen (ref. 44) and those of Hodges (ref. 40) is the form of the constitutive

equation. In Joint experimental and theoretical work, Degener et al. (ref. 50) have

shown that the effective torsional stiffness of a circular-cross-section, nonwarp-

ing, rubber beam under large axial elongation actually decreases and is best pre-

dicted by the Hencky strain-energy function (fig. 9). A classical analysis based on

Green strain energy is completely inadequate, and even the well-known neo-Hookean

material strain energy function only performs fairly well. A strain-energy function

closely associated with Petersen's formulation also performs well.

In other closely related work, Kaza and Kielb examined the effects of warping

and pretwist on torsional vibrations of rotating beams (ref. 51). They found, based

on an analysis similar to that of the older works (such as that of Houbolt and

Brooks) that warping, pretwist, and tension increased the torsional stiffness of

beams.

Advanced beam theories- Most of the effort in the development of elastic-blade

equations, represented by the contributions of Hodges and Dowell (ref. 8), Kaza and

Kvaternik (ref. 28), and Rosen and Friedmann (ref. 23), used a geometric nonlinear

analysis based on the assumption that structural deformations were limited to moder-

ate rotations. Although adequate for many applications in rotor-blade aeroelastic

stability, this assumption has limitations. For example, bearingless-rotor flex-

beams undergo combined bending and torsion deformations that produce large rota-

tions, exceeding the moderate rotation of conventional analyses. Furthermore, the

moderate rotation theories may be valid for a certain range of beam configuration

parameters and then break down for other configurations. One example is the case of

a thin beam for which the ratio of bending stiffnesses is small in some sense.

Ideally, the magnitude of parameters in the equations for general-purpose analyses

should not influence the structure of the equations themselves. Such an ideal is

evidently not present in the ordering schemes of references 8 and 23 or in any

arbitrary a priori restriction to second-degree nonlinearity, as in reference 28.

Furthermore Stephens et al. showed that inconsistencies are virtually unavoidable in

ordering schemes based on displacements and rotations when the magnitude of the

torsion rigidity is small compared with the bending stiffnesses (ref. 52). Another

shortcoming in the moderate rotation equations in references 8, 23, and 28 is that

the effects of pretwist are not treated rigorously.

To address these problems, Hodges developed a more general system of nonlinear

bending-torsion equations for pretwisted beams undergoing small strains and large

rotations (ref. 53). Hodges abandoned the common assumption of moderate rota-

tions. To avoid some of the limitations of previous analyses, Hodges modeled the

kinematics of a slender beam without resorting to an ordering scheme for rotations

or to arbitrary restrictions on degree of nonlinearity allowed in expressions

involving displacement. The transformations used Tait-Bryan orientation angles

although a parallel development based on Rodrigues parameters was included in an
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appendix to reference 53. The kinematic relations that describe the orientation of

the cross section during deformation were simplified by systematically ignoring the

extensional strain compared with unity in those relationships. Open-cross-section

effects such as warping rigidity and dynamics were ignored, but other influences of

warp were retained. The beam cross section was not allowed to deform in its own

plane and the stress-strain relation was assumed to be isotropic. Various means of

implementation were discussed, including a finite-element formulation. This beam

formulation was used as the basis for the GRASP finite-element, coupled rotor-body

aeromechanical stability analysis that will be discussed below.

To evaluate the validity of this theory, particularly for the case of large

deformations, Hodges (ref. 53) compared results for static deformations with the

Princeton beam data from references 11 and 12. These comparisons are also included

together with the earlier theories in figure 3 and show excellent agreement. Fur-

thermore, the large-rotation theory also shows excellent agreement with the data in

figure 6 for beam-bending natural frequencies.

Although Hodges's large-rotation equations in reference 53 represented a sig-

nificant advance, they also contained limitations that stimulated further develop-

ments. First, these equations are restricted to beams to which the Euler-Bernoulli

hypothesis applies. This restriction may be violated for composite rotor blades.

Second, the treatment of tension-torsion coupling is somewhat weak. As in Hodges

(ref. 40), the Green strain components were used and simplified based on heuristic

geometrical arguments to a form valid for small strains and large rotations. In

particular, the nonlinear term in the axial strain expression responsible for the

tension-torsion coupling is difficult to identify based on geometrical arguments

alone. Also, the derivations from Rosen and Friedmann (ref. 22) and Hodges

(refs. 40,53) are very complex as a result of the curvilinear coordinate system.

The derivation and simplification of the strain-displacement relations is so lengthy

and tedious that the details are not included in reference 53.

To remedy these limitations, Hodges initiated development of a new definition

of strain displacement relation for a beam based on the idea of engineering

strain. The motivation was primarily that calculation of Green strain produces many

superfluous terms that need to be removed by some process for small elongations and

shears. The reason for this is that the Green strain principal values contain terms

of the order of elongations squared. This gives rise to terms in the final strain

expression which are of the order of "strain" squared in addition to the true

strain. The Jaumann-Biot-Cauchy "engineering" strain tensor has principal values

that are linear in elongation. Hodges (ref. 45) and Danielson and Hodges (ref. 54)

present this new strain definition, starting with the engineering-strain definition

and rigorously decomposing the finite rotation field. This work does not invoke the

Euler-Bernoulli hypothesis in the kinematics and adds initial curvature to the

description of the reference state of the beam. Most significantly, the algebra of

dealing with the curvilinear coordinate system is greatly simplified with this

formulation in comparison with previous ones.

These developments provide the basis for new advanced beam theories for small

strains and finite rotations. The representation of finite rotation can be by any
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method one desires. For large rotations Rodrigues parameters make the most sense.

For moderate rotations a variant of the Rodrigues formulation, often called the

finite-rotation vector, is preferred. This is the approach recommended for analyti-

cal schemes in which a polynomial expression is desirable for the strain components,

such as a perturbation scheme.

A complete theory based on this kinematical formulation has yet to be devel-

oped. The initial curvature of the elastic axis and effects associated with open

cross sections should also be incorporated. In order to be a practical tool for

rotor-blade analysis, a modeling approach for anisotropic materials must somehow be

included. This problem is not yet fully solved, but several investigators have

begun to work, as discussed below, in connection with composite blade modeling.

Bearingless rotor analysis- This section will discuss Army-NASA research to

develop analysis methods for bearingless-rotor systems, a specialized but important

subclass of elastic blades. The bearingless rotor offers benefits for advanced

rotorcraft development and simplifies rotor hubs by eliminating blade-pitch-change

bearings, and thereby reducing weight, complexity, and maintenance, and increasing

reliability and productivity. Although the physical structure is simplified, the

bearingless rotor requires more sophisticated structural and aeroelastic analysis of

the rotor hub and blades. The bearingless-rotor design is based on replacing blade-

root hinges and bearings with a flexbeam sufficiently flexible in torsion to accom-

modate all blade-pitch-control motion provided by the pitch change bearing of artic-

ulated and hingeless rotors.

The bearingless rotor blade configuration is one of the most challenging prob-

lems for the rotorcraft structural dynamicist. Although the hingeless rotor blade

is already complex, the bearingless rotor presents potentially more difficult prob-

lems because of the flexbeam and the blade-feathering mechanism. Basically, to

accommodate blade motion and feathering, the flexbeam undergoes complex combined

bending and torsion deformations that may be significantly larger than for a hinge-

less rotor blade. The elastic twist needed to accommodate blade feathering may be

of the order of 15°-20 °. At the same time, the flexbeam must carry the full cen-

trifugal tension load of the blade. The pitch-control mechanism introduces a second

load path for blade-root shears and moments and makes the system structurally redun-

dant. Multiple flexbeams introduce additional structural complexities.

Combinations of flexbeam and pitch-control systems lead to a variety of

bearingless-rotor types; the principal ones are depicted in figure 10. The most

direct is a simple torque tube pinned at the hub and either pinned or cantilevered

at the blade root. The cantilever pitch configuration is physically simple but

structural interaction of the pitch arm, flexbeam, and elastic flexbeam generates

complex aeroelastic coupling. The structural interaction may be reduced by a torque

tube and snubber configuration. The snubber, located at the inboard end of a torque

tube fixed to the blade root and enclosing the flexbeam, constrains translation of

the torque tube. Given the unique structural characteristics, it is clear that

conventional elastic-blade equations for hingeless rotor blades are not satisfactory

for bearingless-rotor analysis. The purpose of this section is to describe the
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development of analyses especially tailored to the unique requirements of bearing-

less rotors.

The first serious development of an aeroelastic analysis for bearingless rotors

was due to Bielawa (ref. 55). The differential equations of motion were derived for

the bending and torsional deformations of a nonlinearly twisted rotor blade operat-

ing in a steady flight condition including aeroelastic characteristics germane to

composite bearingless rotors. The differential equations were formulated in terms

of uncoupled vibratory modes with exact coupling effects owing to finite, time-

variable blade pitch and with approximate second-order effects owing to twist. Also

presented were derivations of the fully coupled inertia and aerodynamic load distri-

butions, automatic pitch-change coupling effects, structural redundancy characteris-

tics of the composite bearingless-rotor flexbeam-torque tube pitch-control system,

and a description of the linearized equations appropriate for eigensolution analy-

ses. These equations were used as the basis for the G400 code and aeroelastic

investigations reported in reference 56.

Subsequently, Hodges developed a simplified analysis for coupled rotor-body

stability of rotorcraft with bearingless-rotor blades. FLAIR (flexbeam air reso-

nance) was intended for efficient application as a preliminary design tool and

treated the blade as a rigid body, thereby avoiding the complexity of an elastic

blade formulation (refs. 57,58). The objective was an analysis that possessed the

simplicity of a rigid-blade model but included a relatively detailed treatment of

the flexbeam and pitch-control system. The analysis was based on modeling the rotor

blade as a rigid body attached to the hub by an elastic beam for the flexbeam por-

tion of a bearingless-rotor blade. The flexbeam deflections were treated exactly

for a Euler-Bernoulli beam segment, using the Kirchhoff-Love equations, which are

valid for large rotations. An iterative structural analysis including geometric

nonlinearities, solved by a shooting algorithm for two-point boundary-value prob-

lems, yielded the equilibrium deflected shape of the flexbeam. A numerical pertur-

bation scheme was then used to obtain the stiffness matrix for the tip of the flex-

beam. No ordering scheme was used. The flexbeam degrees of freedom were the three

rotations and three translations of the outboard end of the flexbeam. The rigid-

blade inertial, gravity, and quasi-steady aerodynamic equations were derived for

arbitrarily large deflections and analytically linearized about equilibrium. The

linear flexbeam and blade equations were developed as part of the coupled rotor-body

analysis described later in this section under Helicopter Rotor-Body Equations. The

treatment of the bearingless rotor in FLAIR was sufficiently flexible to permit

analysis of all of the principal configurations in figure 10. The principal limita-

tion of FLAIR was the lack of an elastic blade to capture the intermodal coupling

characteristics typical of many bearingless-rotor blade instabilities.

Another bearingless-rotor analysis was developed by Sivaneri and Chopra, based

on a finite-element approach for the isolated rotor blade including treatment of

dual-flexbeam configurations (ref. 59).

The most recent development in bearingless rotor blade analysis is the GRASP

code, a finite-element analysis developed by Hodges et al. to treat coupled rotor-

body stability of a rotorcraft in hover (ref. 60). GRASP (General Rotorcraft
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Aeromechanical Stability Program) is an advanced analysis system capable of modeling

rotorcraft structures in a very general manner, including rotor-body coupling. In

this sense it is not uniquely designed to handle bearingless-rotor blades; it simply

has the capability to handle arbitrarily complex bearingless-rotor configurations

along with numerous other rotor types as well. In fact, a general finite-element

analysis provides the only realistic means to address the potential complexity of

bearingless rotors. The elements and constraints in GRASP permit the modeling of

large rotation elastic beams, rigid-body masses, and mechanical joints capable of

translation and large rotation. The analysis includes quasi-steady aerodynamic

formulation and dynamic inflow. A more complete description of the features of

GRASP is given the following subsection and later in this section under Helicopter

Rotor-Body Equations.

Finite element formulations- The previous sections described development of

elastic-blade equations aimed at treating the fundamental nonlinear behavior of

cantilever rotor blades. Applications to stability analysis typically use a modal

approach to spatially discretize and solve the elastic-blade partial differential

equations. A Galerkin approach is commonly used to generate ordinary differential

equations in terms of a number of bending and torsion modes of the blade. There are

a number of limitations to this approach and inevitably the use of finite-element

methods is desirable. A considerable part of rotorcraft structural mechanics

research effort has begun to focus in this direction.

Some of the limitations of the modal methods stem from complexities of deriving

nonlinear equations for rotating beams. These equations can be extremely long and

complicated. The problem is made worse by the explicit appearance of many struc-

tural and geometric configuration parameters that play an important role in the

aeroelastic stability of hingeless rotor blades. For bearingless rotors, the redun-

dant load paths present further difficulty. In addition to their complexity and

lack of generality, the modal equations cannot accurately represent rotor blades

having large or discontinuous radial variations in mass or in structural and geo-

metric properties. With these difficulties as a stimulus, Army-NASA researchers

began to investigate the application of finite-element methods to the problems of

rotating slender beams undergoing nonlinear axial, bending, and torsional

deformations.

In one of the first applications, Hohenemser and Yin studied a simple stability

problem involving flap bending of rotor blades mounted on flexible supports

(ref. 61). Strictly speaking, their approach utilized the transfer matrix tech-

nique, not a true finite element method, but one in common use in the rotorcraft

field. Friedmann and Straub developed a weighted residual Galerkin-type finite-

element method to study the aeroelastic stability of flap-lag motions of a hingeless

rotor blade in the hovering flight condition (ref. 62). This method was also

applied in references 63 and 64 to formulate the finite-element equations for flap-

lag-torsion of hingeless rotor blades in forward flight and to investigate flap-lag

stability characteristics in forward flight.

The method is based on the partial differential equations of equilibrium, which

are discretized directly, using a local weighted residual Galerkin method. Each
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element has eight nodal degrees of freedom representing flap and lag bending dis-

placements and slopes at the ends of the element. The later analyses that treat

torsion have three torsional degrees of freedom, one at each end of the element and

one in the middle. Blade bending is discretized using conventional shape functions

for beam bending based on cubic Hermite polynomials. Torsion is discretized using a

quadratic function resulting in the additional internal nodal degree of freedom.

The axial displacement has no degrees of freedom associated directly with it because

the blade is assumed to be inextensional. The element matrices obtained in this

procedure are dependent on the nonlinear equilibrium position. The element matrices

are assembled using a conventional direct stiffness method. After assembly, a

normal-mode transformation is used to reduce the number of nodal degrees of freedom.

In another investigation, Cell and Friedmann (ref. 65), treat the aeroelastic

stability of swept-tip rotor blades using a Galerkin finite-element technique

(ref. 62) including a special element for the structural, inertial, and aerodynamic

terms of the swept tip. The element equations were based on the Shamie and

Friedmann formulation (ref. 24).

Another approach to finite-element formulations for rotor blade aeroelasticity

is based on a conventional local Rayleigh-Ritz finite-element method. Sivaneri and

Chopra studied the problem of hingeless rotor blade flap-lag-torsion in hover and

solved the nonlinear equilibrium equations using the finite-element analysis

directly (ref. 66). A normal-mode method is used for the linearized flutter analy-

sis. Chopra and Sivaneri (ref. 67) and Sivaneri and Chopra (ref. 59) extended this

work with a more elaborate fifteen-degree-of-freedom beam finite element applied to

analyze the hover stability of bearingless-rotor blades including multi-flexbeam

configurations. There are two reasons for the additional degrees of freedom:

(I) it is necessary to include the axial displacement explicitly in order to treat

structures with multiple load paths such as bearingless rotor blades; and (2) it is

necessary to have a more accurate interpolation of axial displacement so that inac-

curacies in determining the effective bending stiffness, owing to a form of membrane

locking, do not occur.

Early work at the Aeroflightdynamics Directorate was aimed at development of a

finite-element analysis with ample modeling flexibility to deal with realistic

bearingless-rotor-blade configurations. The work described above was based on

discretization of the equations for a rotating blade having a specified orienta-

tion. That is, the finite-element equations were not sufficiently general to allow

assembly of elements together at arbitrary angles to one another. An approach

general enough to allow coupling of rotating blade elements together in such a

manner still did not exist.

Furthermore, rotating beam finite elements are subject to a form of membrane

locking that can generate serious errors, especially in portions of the structure

where the geometric stiffness must be determined from the strain instead of from the

integration of the loading, such as in a redundant load path (see ref. 59). One way

to circumvent this problem is to introduce generalized coordinates associated with

higher-order polynomials. Since redundant load paths are typical of bearingless-
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rotor systems, early work at the Aeroflightdynamics Directorate was aimed at devel-

opment of a variable-order finite element.

Hodges investigated the vibration and response of nonuniform rotating beams

with discontinuities in mass and bending stiffness (ref. 68). The direct analytical

method of Ritz was used by Hodges to generate finite elements with shape functions

of arbitrary order (ref. 69). Free vibration and forced-response results were

presented to establish the capabilities of the method. Results for planar bending

of a rotating beam indicated excellent convergence to exact solutions, even at

points of discontinuity and near boundaries. The development of this variable-order

finite-element method continued to progress toward incorporation into conventional

finite-element codes. Hodges and Rutkowski (ref. 70) and Hodges (ref. 71) provided

details on development of shape functions and modified the work reported in refer-

ence 69 to a true finite-element form so that the generalized coordinates were

actual displacements and slopes at ends of the element. In addition to the usual

nodal displacements at the ends of the element, an arbitrary number of additional

internal generalized coordinates were used.

Hodges extended the AFDD efforts in rotor-blade finite-element analysis to the

implementation of a variable-order finite element based on the large rotation-beam

theory (ref. 53). This element was the basis for the aeroelastic beam element

developed for the GRASP analysis that will be discussed in more detail in this

section under Helicopter Rotor-Body Equations.

The aeroelastic beam element developed for GRASP represents a slender-beam

element without shear deformation that is subject to elastic, inertial, gravita-

tional, and aerodynamic forces. The element is derived on the basis of small

strains and large rotations (limited to 90 ° because of use of orientation angles to

define finite rotation kinematics inside the element). The element degrees of

freedom include a reference frame, structural nodes at the ends of the beam, an air

node, and internal degrees of freedom for increased accuracy of beam-deformation

calculations. The main element properties include mass, inertias, pretwist, axial,

bending, and torsion stiffness, structural damping, and airfoil aerodynamic proper-

ties, including chordwise aerodynamic center offsets. The GRASP element is not

intended to acconunodate composite material properties.

One finding from Hodges et al. (ref. 35), which should be mentioned at this

point for the benefit of ongoing finite-element development work, is that the tor-

sional kinematical variable used by Hodges and Dowell (ref. 8), although suitable

for integration and modal methods of solution, may not be suitable in a general-

purpose finite-element context. This applies both to this variable, defined as the

integral of the torsional component of the curvature vector, and to analogous axial

displacement variables, defined as integrals of axial strain. The presence of

integrals in the kinematical relations can introduce undesirable couplings into a

finite-element analysis. The work by Hodges uses an angle, which is suitable for

finite element work; use of Rodrigues parameters would also be suitable (ref. 53).

Composites- Most modern rotor blades are constructed from composite mate-

rials. The initial impetus for the use of composites was the very significant
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improvement in fatigue life and damage tolerance of the blades and, later, the

benefits afforded by the ability to incorporate more refined aerodynamics into

planform and airfoil section geometries. For advanced rotor blades, composite

materials provide opportunities for structural simplicity of hingeless and bearing-

less designs, and structural couplings to improve the aeroelastic stability of these

configurations. Most structural models described above have been limited to isotro-

pic material properties. Rotor blades and flexbeam structures are built up from

composite materials, and cannot be regarded as isotropic. There may be coupling

between extension, bending, and shear deformation; warping effects may be much more

significant. These complexities generally invalidate the Euler-Bernoulli beam

assumptions that plane beam cross sections remain plane and perpendicular to the

elastic axis.

Work in this area can be classed in two distinct areas: (I) the development of

modeling approaches so that the three-dimensional constitutive law for general

anisotropic elasticity can be reduced to a simple one-dimensional form for the beam

problem; and (2) the use of a specialized, simple model for the blade cross section

in order to assess the stability of rotor blades for various values of ply orienta-

tion and other geometric parameters.

Work in the first category focuses on the determination of the shear center

location and warp functions. Cross-section properties can then be evaluated for use

in the one-dimensional beam theory, which has been developed with appropriate kine-

matics and material constants. Determination of the shear center location and warp

functions can either be from use of a two-dimensional finite-element model of the

blade cross section or analytically from simplified physical models for the cross

section. Fundamental work by Rehfield and Murthy was aimed at representing nonclas-

sic effects of composites on beam structural behavior (ref. 72). These effects are

related to transverse shear, bending-related warping, and torsion-related warping.

Bauchau developed an anisotropic beam theory in which out-of-plane cross-section

warping is determined from a finite-element solution of a Laplace-type equation over

the cross section (ref. 73). The solution is expressed in terms of an arbitrary

number of so-called eigenwarpings. In practice, only a few eigenwarpings are

needed.

More recently, Kosmatka developed a method for analyzing highly swept curved

blades constructed of anisotropic composite materials (ref. 74). A finite-element

model of the cross section yields both in-plane and out-of-plane warping functions

and the shear center location. This method is applicable to rotor blades as well.

Kim and Lee have developed a similar approach, although not as general (ref. 75}. A

considerably simpler approach was developed by Rehfield, in which a general cross

section is approximated as a multi-celled box beam whose shear center location and

warp function can be determined analytically (ref. 76}. The Rehfield and Bauchau

methods both yield results of comparable accuracy for box beams (ref. 77). None of

these methods has yet been developed and validated to the degree necessary for

general-purpose analysis of rotor-blade cross sections.

Work in the second category has been chiefly that of Chopra and his

co-workers. Hong and Chopra developed a composite beam finite-element anlaysis for
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flap-lag-torsion stability of a hingeless rotor blade in hover (ref. 78). The blade

was treated as a single-cell-dominated shell beam composed of an arbitrary layup of

composite plies. Stiffness coupling terms caused by bending-torsion and tension-

torsion couplings were correlated with different composite ply layups. The results

show that such couplings can have a significant effect on the stability.

Coupled Rotorcraft Equations

Equations for isolated rotor blades have been discussed in previous sections;

this section deals with coupled rotorcraft equations where the isolated blade equa-

tions are combined with equations of other blades or rotorcraft components such as

fuselages, support systems, or nacelle-pylon-wing components. The most important

coupling is that between the rotating and fixed system; this coupling is one of the

central features of rotorcraft dynamics. Other important coupled systems involve

rotor feedback control systems, certain rotor types such as teetering or gimbal

rotors that structurally couple rotor blades, or even the dynamic inflow model.

This section is divided into two principal areas, helicopter coupled rotor-body

systems and tilt-rotor systems.

Helicopter rotor-body equations- Rotor-body coupling is important in aeroelas-

tic stability because of the strongly destabilizing mechanical coupling that occurs

for some rotorcraft configurations; for example, the classic ground resonance

treated by Coleman and Feingold (ref. 79). When both aerodynamic and aeroelastic

considerations are involved, this phenomenon is often termed aeromechanical stabil-

ity. The principal issue in coupled rotor-body equations of motion is the fact that

rotor-blade equations are written in a rotating frame of reference whereas fuselage

equations are written in a nonrotating frame of reference. When arbitrarily large

rigid-body motions of an elastically deforming fuselage are considered, this becomes

a formidable problem in dynamics.

For most problems in aeroelastic stability, only small motions are involved and

the problem is relatively straightforward. The use of a coordinate transformation

from the blade-fixed rotating system to the body-fixed nonrotating coordinate system

has long been used in deriving equations for rotorcraft analysis. Hohenemser and

Yin developed a formal version of this technique known as multiblade coordinates

that has since gained wide acceptance in the rotorcraft technical community

(ref. 80). The multiblade transformation changes blade equations from a rotating

frame of reference to a nonrotating frame of reference and also combines the equa-

tions for a given degree of freedom of k individual blades into a system of equa-

tions for the corresponding multiblade degrees of freedom for a rotor having k

blades. It is particularly useful for formulating equations of coupled rotor-body

systems, for simplifying the periodic-coefficient equations of motion of rotor

blades in forward flight, and for providing rotor degrees of freedom that better

lend themselves to physical interpretation of analysis results than individual blade

degrees of freedom.

Within the scope of this survey, important work on coupled rotor-body aerome-

chanical stability of hingeless rotorcraft in hover was carried out by Cardinale
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using a simplified modal representtion for the blade together with coupled fuselage

and control gyro equations (ref. 81). Hammond developed equations of motion, using

the Coleman and Feingold physical model, to represent rotorcraft configurations

having one of the blade dampers inoperative (ref. 82). In general, these equations

have periodic coefficients, and Hammond used Floquet theory to solve them. Johnston

and Cassarino developed a system of coupled rotor-body equations, based on a modal

analysis of coupled flap-lag-torsion dynamics for an elastic blade (ref. 83). The

equations were linearized for aeroelastic stability analysis in hover and forward

flight. The latter equations were approximated by the constant-coefficient form of

the multiblade coordinate equations. A more restricted example of coupled rotor-

blade equations is the two-bladed teetering-rotor problem treated by Shamie and

Friedmann (ref. 84). Hohenemser and Yin developed coupled equations for a rotor and

elastic supports, using a finite-element formulation (ref. 61).

Johnson developed a very complete set of equations of motion for an analytical

model of the aeroelastic behavior of a rotorcraft operating in a wind tunnel or in

free flight (ref. 85). A unified development is presented for a wide class of

rotors, helicopters, and operating conditions. The rotor model includes coupled

flap-lag bending and blade torsion degrees of freedom, and is applicable to articu-

lated, hingeless, gimballed, and teetering rotors with an arbitrary number of

blades. The aerodynamic model is valid for both high and low inflow, and for axial

and forward flight. The rotor rotational speed dynamics, including engine inertia

and damping, and the perturbation inflow dynamics are included. A normal-mode

representation of the wind-tunnel test module, strut, and balance system is used.

The aeroelastic analysis for the rotorcraft in flight is applicable to a general

two-rotor aircraft, including single main-rotor and tandem helicopter configura-

tions, and side-by-side or tilting proprotor aircraft configurations. The aircraft

motion is represented by the six rigid-body degrees of freedom and the elastic free-

vibration modes of the airframe. The aircraft model includes rotor-fuselage-tail

aerodynamic interference, a transmission and engine dynamics model, and the pilot's

controls. A constant-coefficient approximation for forward flight and a quasi-

static approximation for the low-frequency dynamics are also described. The coupled

rotorcraft or support dynamics are represented by a set of linear differential

equations, from which the stability and aeroelastic response may be determined.

A simplified system of equations for air-ground resonance of hingeless rotors

in hover was developed by Ormiston for application to parametric investigations

reported in reference 86. The equations of motion treat a simplified model of a

hingeless-rotor helicopter having spring-restrained, hinged-rigid blades with flap-

lag motion (ref. 87). Kinematic aeroelastic couplings were included to represent

the effects of blade torsion and typical couplings of hingeless blades.

Hodges developed a coupled rotor-body analysis for aeromechanical stability of

bearingless-rotor helicopters in hover, axial flight, and ground contact. A

detailed derivation of the equations of motion for FLAIR (flexbeam air resonance) is

given in references 57 and 58. Treatment of the bearingless blade was described

earlier in this section. The fuselage is treated as a rigid body and the landing

gear as simple spring elements. The equations are limited to hover and axial flight
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and include four rigid-body degrees of freedom for the fuselage pitch and roll

angular motion, and longitudinal and lateral translations.

The analysis was based on the set of generalized forces owing to inertia,

gravity, body springs and dampers (for the aircraft in ground contact), quasi-steady

aerodynamics, and the flexbeam structure. All of these generalized forces (except

those caused by flexbeam structural loads) were written exactly, for arbitrarily

large deflections, and analytically linearized about equilibrium. The linearized

perturbation forces and moments associated with the flexbeam structure, the pitch-

control links, body springs and dampers, and inertial, gravitational, and aerody-

namic loadings, when combined, yielded a system of constant-coefficient, linear,

homogeneous, ordinary differential equations in the nonrotating reference system.

Only the cyclic multiblade rotor modes were retained. Solutions were obtained by

standard eigenanalysis. Results of stability investigations will be discussed

below. The FLAIR analysis was used to support the design development of the Boeing

Vertol Bearingless Main Rotor (refs. 88-90), and it has been extended and used in

support of the ITR/FRR bearingless rotor preliminary design as reported by Hooper

(ref. 91).

Warmbrodt and Friedmann also developed equations of motion for coupling rotor-

fuselage and rotor-support systems (refs. 92,93). An aerodynamic formulation is

included for hover and forward flight. The equations are written in partial differ-

ential equation form and are applicable to the aeroelastic stability problem. The

importance of an ordering scheme for deriving a consistent set of nonlinear coupled

rotor-body equations is emphasized.

Following earlier work (ref. 85), Johnson extended the general rotorcraft

analysis to a more comprehensive analysis known as CAMRAD (refs. 94-96). _ Intended

for application to both rotorcraft dynamic response and stability, this comprehen-

sive analysis is intended for calculating performance, loads, noise, vibration, gust

response, flight dynamics, handling qualities, and aeroelastic stability. The

equations applicable for aeroelastic stability are similar to those developed in

reference 85.

A coupled rotor-fuselage analysis for application to multi-rotor hybrid heavy-

lift vehicles was developed by Venkatesan and Friedmann (refs. 97,98). These equa-

tions represent the blades as spring-restrained, flap-lag hinged-rigid blades and

the fixed system as rigid bodies attached to a flexible supporting structure. The

aerodynamic formulation is derived for hover and forward flight.

The GRASP analysis developed by Hodges et al. (ref. 60) is a major development

for coupled rotorcraft systems. GRASP (General Rotorcraft Aeromechanical Stability

Program) is a hybrid of a finite-element program and a spacecraft-oriented multibody

program. GRASP differs from standard finite-element programs by incorporating

multiple levels of substructures which can translate or rotate relative to other

substructures without small-angle approximations. This capability facilitates the

modeling of rotorcraft structures, including the rotating-nonrotatinginterface and

details of the blade-root kinematics for various rotor types. GRASP treats aero-

elastic effects, including dynamic inflow (treated later in this section) and non-
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linear aerodynamic coefficients. The aeroelastic beam element of GRASP was

described in more detail earlier in this section under Finite-Element Formulation.

The analysis includes the equations of equilibrium for the hover flight condition

and calculates linearized perturbation equations for stability analyses. To illus-

trate how a problem is defined using the hierarchical substructuring of the GRASP

system, a simple coupled rotor-body problem was chosen for modeling. This example

is illustrated in figure 11 (from ref. 60). Three blades are combined to form a

rotor subsystem which is in turn combined with the air mass and fuselage rigid-body

elements to form the complete coupled rotor-body system.

Tilt rotor analysis methods- Analysis of tilting proprotor dynamics has histor-

ically drawn from rotorcraft technology. Tilt-rotor aeroelastic stability analysis

is fundamentally similar to coupled rotor-body helicopter dynamics; the differences

in analysis are mainly a matter of detail, primarily the complexity of the physical

system and the many degrees of freedom needed to insure a reasonably complete

dynamic analysis. In general, tilt-rotor analysis must include coupled wing bending

and torsion, pylon pitch and yaw, rotor-blade flap bending, lead-lag bending and

torsion, as well as rotor speed and rigid-body airframe degrees of freedom.

Although the rotors operate in axial flow conditions when in the hover and airplane

modes, forward flight operation in the helicopter mode and the intermediate nacelle

tilt conversion mode introduce the same periodic coefficient effects into the equa-

tions of motion as experienced by the helicopter. Some of the differences between

helicopter and tilt-rotor analysis include larger rotor speed variations, larger

collective pitch range and blade twist, high inflow aerodynamics, and different

rotor-airframe wake interference effects.

Before the period addressed in this survey, government researchers contributed

to the development and understanding of theories of propeller-nacelle whirl flutter,

using simplified methods to understand the mechanisms and predict the relevant

phenomena. Typical analyses were developed by Reed and Bland, Houbolt and Reed, and

Reed; this work will be discussed in section 3 under Tilt-Rotor Aircraft Stabil-

ity. These methods treated the propeller blades as rigidly attached to a hub

mounted on a nacelle free to pivot in pitch and yaw. Aerodynamic forces for the

axial flow condition typically were derived from simple quasi-steady strip theory.

Such an approach, although generally sufficient for classical propeller whirl flut-

ter, is not adequate for tilt-rotor aircraft configurations. Additional require-

ments for such analyses were addressed independently in the works of Kvaternik and

Johnson.

Kvaternik developed a proprotor aeroelastic stability analysis including wing,

nacelle, and rotor-blade degrees of freedom (ref. 99). All elements were modeled as

rigid bodies with spring-restrained hinges where appropriate. The nacelle included

pitch and yaw degrees of freedom and the rotor blades were hinged for flap

motions. The effectiveness of this analysis in predicting proprotor whirl flutter

was verified by extensive comparisons with model test data described by Kvaternik

and Kohn (ref. 100). This analysis was the basis for later extensions that included

provisions for a gimbaled hub with offset coning hinges, blade lead-lag motion, a

modal representation of the airframe structure, full span free-free or semispan
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cantilevered configurations, and rigid-body aircraft degrees of freedom. Nonthrust-

ing-, windmilling-, and cruise-mode flight conditions were included. This analysis

was named PASTA (Proporotor Aeroelastic Stability Analysis) and was later used in

support of V-22 aeroelastic model testing in the NASA Langley Transonic Dynamics

Tunnel.

Johnson developed a series of tilt-rotor aeroelastic stability analyses later

incorporated in the comprehensive CAMRAD analysis for rotorcraft performance, loads,

stability and control, aeroelastic stability, and acoustics. CAMRAD contains the

capability to predict the linear stability characteristics of tilt-rotor configura-

tions in various flight conditions (ref. 94). The initial development of the tilt-

rotor equations, reported in reference 101, treated a semispan configuration con-

sisting of a cantilever wing, nacelle, and proprotor and modeled uncoupled flap and

lead-lag bending of elastic rotor blades, and elastic beam and chord bending and

torsion of the wing. Quasi-steady aerodynamic forces were included and equations

for rotors having two or more blades were developed. For the two-bladed configura-

tions the equations included periodic coefficients; for rotors having three or more

blades, the use of the multiblade transformation yielded equations with constant

coefficients. The equations in reference 101 were used by Johnson to correlate with

full-scale experimental test data of two semispan wing-nacelle-proprotor models.

Johnson extended his analysis in reference 102 by refining the rotor modeling

to include coupled elastic flap and lead-lag bending modes, rigid pitch motion of

the blades to reflect pitch control system flexibility, blade elastic torsion,

gimbal tilt, and rotor speed perturbations. The aerodynamic model treated high and

low inflow, axial and nonaxial flight. The effects of compressibility and static

stall on the airfoil coefficients were included. The rotor model included gimbal

undersling, torque offset, precone, droop, sweep, and feather axis offset. Blade

section center of gravity, aerodynamic center, and tension axis offsets from the

elastic axis were included. In reference 103, Johnson added an engine-transmission-

governor model including an interconnect shaft between the two rotors, refined the

method for treating kinematic pitch-bending coupling of the blade, and extended the

rotor aerodynamics model to include reverse flow. In reference 85, Johnson con-

tinued development of rotorcraft aeroelastic analysis, generalizing a system of

coupled rotor-body equations to treat multirotor helicopters (single main rotor and

tail rotor, twin rotor tandem) and symmetric tilt-rotor vehicles in both free flight

or in wind tunnel or ground contact conditions. For tilt rotors, this analysis was

advanced over previous work because it included complete rigid-body aircraft degrees

of freedom and two complete proprotors. Linearized small-perturbation equations

were developed for aeroelastic stability analysis.

Finally, this analytical model was used as the basis for the CAMRAD comprehen-

sive rotorcraft analysis for use in predicting performance loads, stability and

control, and acoustics characteristics in addition to aeroelastic stability

(ref. 94). Johnson used these analyses for a number of research investigations of

tilt-rotor aeroelastic stability that will be discussed below. Johnson used XV-15

wind-tunnel and flight-test data for comparison with the CAMRAD analysis to assess

its adequacy to predict tilt-rotor aircraft performance, loads, and stability
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(ref. 104). Generally the aeroelastic stability prediction capability was Judged to

be good; however, additional capabilities were considered desirable for future

configurations such as bearingless rotors.

In summary, the development of aeroelastic stability analysis capability

described herein has had and will continue to have a significant effect on the

successful development of the revolutionary tilt-rotor aircraft concept.

UNSTEADY AERODYNAMICS

This section will treat developments in rotor unsteady aerodynamics applicable

to rotorcraft aeroelastic stability.

Unsteady aerodynamics of rotor blades is considerably more complex than that of

fixed wings for which flutter analysis for three-dimensional, unsteady, compressible

flow is reasonably well developed. For the rotor blade, many aeroelastic stability

problems may be successfully treated with two-dimensional quasi-steady aerodynamics;

however, there is also a need to treat unsteady, compressible flow, dynamic stall,

and varying free-stream velocity, as well as three-dimensional effects of returning

wake sheets and variable sweep angle. In view of these complications, progress in

advanced unsteady aerodynamics for rotary wing applications has been slow, and

researchers and designers alike have had to rely on approximate simplified methods.

Most rotary-wing aerodynamics research has been directed toward rotor perfor-

mance, loads, vibrations, and stability and control. For these applications, rotor

aerodynamics generally is divided into two parts: rotor-blade airfoil section

airloads and rotor-wake-induced inflow. The rotor-blade section airloads are calcu-

lated using approximate or empirical methods such as linear steady or unsteady thin-

airfoil theory, or from airfoil aerodynamic coefficients tabulated as a function of

angle of attack and Math number. Empirical corrections are applied to account for

blade sweep, compressibility, static and dynamic stall, and blade-vortex interaction

effects. The wake-induced velocity is needed to define the local blade-section

angle of attack from which blade-section airloads are calculated. Various momentum

and discrete vortex-wake theories have been developed for the rotor-induced

inflow. The formulations for airfoil airloads and wake-induced velocity are solved

together with the blade dynamic response equations either by numerical integration

in the time domain, or by iteratively calculating the response coefficients in the

frequency domain.

In general, this approach provides the rotor transient or steady-state periodic

airloads that can be used to calculate rotor performance, loads, vibrations, and

vehicle stability and control. However, these methods do not yield direct informa-

tion on rotor aeroelastic stability characteristics. It is sometimes possible to

use direct numerical integration of the rotor loads equations to determine stabil-

ity, but it is more desirable to solve linear differential equations by means of

eigenanalysis to obtain stability characteristics directly.
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In general, rotor-blade flutter analysis employing unsteady aerodynamic theory

is carried out using methods adopted from fixed-wing flutter analysis. Fixed-wing

unsteady aerodynamic theory, in contrast to the typical rotorcraft approach

described above, generally relates the airfoil airloads directly to the motion of

the airfoilmcombining airfoil-section airloads and wake-induced inflow in a single

analytical model. The unsteady aerodynamic theory is generally formulated in the

frequency domainmharmonic airloads expressed in terms of harmonic airfoil

motions. Aeroelastic stability equations therefore assume airfoil motion to be

harmonic and solutions that satisfy this assumption therefore determine the neutral

stability condition.

If a time-domain aerodynamic theory is available, it is preferable to use a

standard eigenanalysis solution yielding both damping and frequency for conditions

of arbitrary stability. The latter approach is typically used for quasi-steady

theory but is more difficult for sophisticated unsteady aerodynamics.

The scope of this section will cover a variety of unsteady aerodynamic develop-

ments, including two-dimensional linear and nonlinear unsteady aerodynamic theory;

finite state models; three-dimensional unsteady aerodynamic theory; and dynamic

inflow, a simplified three-dimensional unsteady actuator disc rotor wake model.

Two-Dimensional Unsteady Aerodynamics

As noted above, rotary-wing aeroelastic stability has borrowed from methods

developed for fixed-wing flutter analysis. Classical Theodorsen unsteady aerody-

namic theory is applicable for rotor-blade bending-torsion flutter and is commonly

applied in quasi-steady form (ref. 105). Loewy's theory, which extends Theodorsen

theory to the hovering rotor problem, approximately represents the effects of wake

vorticity of previous blade passages (ref. 106). Greenberg's theory is commonly

applied to account for the effects of varying free-stream velocity of rotor-blade

airfoil sections caused by forward flight or inplane motion of the blade

(ref. 107). These theories formed a basis for government research activities

addressed in this survey.

One area addressed by government researchers is the application of these two-

dimensional, unsteady aerodynamic theories to rotor-blade problems. The elastic

motion of a fixed-wing configuration is clearly defined, but a rotor blade undergo-

ing moderately large deformations in elastic bending and torsion and pitch rotations

is kinematically more complex and requires special attention. Relating the rotor-

blade motion variables to the airfoil-motion variables of two-dimensional unsteady

aerodynamic theory was addressed by Johnson (ref. 108), Kaza and Kvaternik

(ref. 109), Friedmann and Yuan (ref. 110), and Peters (ref. 111). These works

indicate that a failure to properly include the aerodynamic theory in the aeroelas-

tic analysis can lead to erroneous stability predictions.

Recent efforts have also been made to transform rotor unsteady aerodynamic

theories from the frequency domain to the time-domain. Frequency-domain

formulations are not convenient to use for aeroelastic stability analysis and,
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except for neutral stability conditions, provide only an approximation to unsteady

aerodynamics for transient motion. Dinyavari and Friedmann developed approximate

time-domain models for Loewy and Greenberg unsteady aerodynamic.theories

(ref. 112). The finite-state models were obtained by using Pade approximants of the

appropriate lift deficiency functions contained in the Loewy and Greenberg theo-

ries. The approximation did not, however, capture the oscillatory behavior of the

Loewy lift-deficiency function that represents the effects of wake vorticity shed by

previous revolutions of the rotor blades.

The Greenberg finite-state model was applied to predict aeroelastic stability

of a rotor blade in hover and forward flight (ref. 113). Friedmann and Venkatesan

also formulated another technique for approximating the Loewy lift-deficiency func-

tion (refs. 114-116). This method, derived from linear control system theory and

termed the Bode plot method, involves curve fitting an approximate function for the

Bode plot of the lift-deficiency function. This model may be incorporated in rotor

aeroelastic equations and solved by eigenanalysis techniques to yield frequency and

damping characteristics. Although these methods are not yet in common use by rotor-

craft analysts, they are an important step in beginning to take advantage of analy-

sis capabilities that are in use in the fixed-wing field.

Two-dimensional linear unsteady aerodynamic theory, even without nonlinear

stall behavior, is a valuable and powerful tool for predicting rotor aeroelastic

stability in the hover flight condition, but there are serious theoretical limita-

tions for forward flight applications. As advance ratio increases, reverse flow and

localized high-lift conditions produce time-varying nonlinear stall effects. Recent

research aimed at aeroelastic stability analysis applications has begun to focus on

nonlinear aerodynamics problems.

Ormiston and Bousman used quasi-steady stall analysis for application to flap-

lag stability in hover (ref. 117). It was shown that the static nonlinearities in

the airfoil lift and drag coefficients versus angle of attack, when included in a

linearized aeroelastic analysis, were sufficient to adequately account for differ-

ences observed between measured blade-lead-lag damping and predictions based on

unstalled airfoil theory.

Rogers has recently made progress in adapting nonlinear dynamic stall models to

aeroelastic stability analysis in forward flight (ref. 118). Dynamic stall models

have been developed for use in rotor airloads analysis, that is, in predicting rotor

blade dynamic response and the associated unsteady blade airloads in forward flight,

primarily in steady-state, trimmed flight conditions. These are usually empirical

models in either the time domain or frequency domain and they rely on experimental

data obtained from oscillating airfoil testing. Tran and Petot developed a time

domain model consisting of differential equations relating the unsteady aerodynamic

coefficients to airfoil motion variables (ref. 119). The parameters in these equa-

tions are functions of mean angle of attack of the airfoil and are derived from

airfoil test data. However the formulation is valid for arbitrary motion rather

than Just simple harmonic motion. Rogers and Peters used the Tran-Petot nonlinear

stall model to analyze the flapping stability of a rotor blade in forward flight
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(ref. 118). The model was used to numerically calculate a nonlinear periodic equi-

librium solution for rotor-blade response in forward flight.

Thereafter the nonlinear equations were analytically linearized for small-

perturbation motions about the periodic equilibrium solution. The resulting peri-

odic coefficient, linear differential equations were solved by Floguet theory to

yield frequency and damping of the blade flapping motion.

Peters extended the Tran-Petot dynamic stall model with the objective of devel-

oping a unified model for unsteady aerodynamic lift of a two-dimensional airfoil

section for use in rotor-blade aeroelastic stability analysis (ref. 111). The model

is unified in the sense that it explicitly distinguishes between airfoil pitch and

plunge motion and includes unsteady velocity, reverse flow, and large angles of

attack. The model also reduces to Greenberg theory at small angles of attack and

further reduces to Theodorsen theory for steady velocity.

Three-Dimensional Unsteady Aerodynamics

There is much to be done for three-dimensional unsteady aerodynamics applicable

to rotor-blade aeroelastic stability. An important early work in the field by

Miller developed an analytical formulation for unsteady airloading (ref. 120).

Substantial contributions have been made at ONERA by Dat (ref. 121), and more

recently by Runyan and Tai (ref. 122). The problem, even in linear form, is a

difficult one that has not attracted sufficient attention by rotorcraft

researchers. Nevertheless, a rational, three-dimensional linear unsteady aerody-

namic theory applicable to forward flight would be very useful for basic aeroelastic

stability analyses in forward flight.

Much of the problem of three-dimensional unsteady aerodynamics of rotors lies

in the complexity of the rotor configuration. In the case of fixed-wing unsteady

aerodynamics, the extension from the two-dimensional airfoil problem to the three-

dimensional problem involves the spanwise variations in airloads distribution and

(implicitly) the associated shed and trailed vorticity conveoted from the wing by

the free-stream velocity in an undeformed planar sheet.

Linear potential-flow theory has been used to develop rigorous unsteady

lifting-surface aerodynamic theories (e.g., vortex doublet lattice). For the

three-dimensional rotor blade, there are also the effects of the helical wake con-

figuration, the effects of unsteady variations in free-stream velocity and direc-

tion, and the effects of other blades on the rotor. For the purposes of aeroelastic

stability, the wake geometry may be assumed undeformed, and the perturbation

unsteady aerodynamics may be obtained from linear theory.

Dat has developed linear three-dimensional unsteady lifting-line and lifting-

surface theories for rotor blades, using an integral equation formulation based on

the acceleration potential including linear compressibility effects. The theory has

been applied to aeroelastic stability analysis of proprotor blades in axial flight

as reported by Dat (ref. 123).
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A similar theory has been developed by Runyan and Tai (refs. 122,124). They

developed a lifting-surface theory for a helicopter rotor blade in forward flight

utilizing the concept of the linearized acceleration potential and a doublet lattice

procedure. The method was applied to rotor blade forced-response airload calcula-

tions. Results are also calculated for the rotor-blade airload response to an

oscillatory blade-pitch excitation. Although the theory was not applied to an

aeroelastic stability analysis, it would be suitable for such investigations.

Dynamic Inflow

Background- Dynamic inflow is a simplified model for the unsteady induced

inflow of a rotor. It treats the inflow but not the airloads part of unsteady

aerodynamic theory. When used with quasi-steady airfoil theory, it provides a

convenient, inexpensive, unsteady aerodynamic model that is useful for a number of

rotor and coupled rotor-body low-frequency aeroelastic stability problems. In some

respects, it may be thought of as a low-frequency approximation for a linear, three-

dimensional, unsteady aerodynamic theory for a rotor blade. Dynamic inflow repres-

ents the rotor as an actuator disk, in effect ignoring the higher frequency influ-

ence of the airfoil shed wake while including the effect of the trailing wake. In

contrast with the relatively limited unsteady aerodynamic research efforts discussed

above, dynamic inflow theory has been the focus of considerable study. This section

will review the significant accomplishments in this area, and also indicate the

effect of this work on rotorcraft aeroelastic stability analysis.

By 1971, it had already been established, although it was not widely recog-

nized, that the induced inflow of a rotor responds in a dynamic fashion to changes

in rotor lift. Amer recognized that the roll damping of a helicopter was signifi-

cantly affected by the induced-flow gradients from the asymmetric lift associated

with the rolling motion (ref. 125). Sissingh was able to quantify this phenomenon

through a set of equations that related the induced-flow gradient to the lift gradi-

ent (ref. 126). Curtiss and Shupe showed that the Sissingh theory could be placed

in the form of a lift-deficiency function, involving an equivalent Lock number

(ref. 127).

Although these theories are only quasi-steady representations which assume that

inflow responds instantly to changes in thrust, it is important to recognize that

the induced inflow response to rotor loads can involve significant time delays. In

fact, Carpenter and Fridovich had performed experiments on the thrust and inflow

response of a helicopter rotor to step inputs in collective pitch and had found time

constants of the order of the apparent mass of an impermeable disk (ref. 128).

Furthermore, Loewy's theory, a two-dimensional approximation to unsteady rotor

aerodynamics, had been shown to yield a lift deficiency that exactly matches the

Sissingh result at zero frequency, but that approached unity as frequency increases

(ref. 106). Yet, despite this rather extensive knowledge based on the low-frequency

behavior of the unsteady aerodynamics of rotors, no general theory existed that

could model these aerodynamics in hover, in axial flight, and in forward flight.

Furthermore, there was no comprehensive set of data to compare with prospective
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theories. Government-sponsored research changed this situation beginning in the

early 1970's.

Initial interest in rotor inflow resulted from an Aeroflightdynamics Director-

ate experimental investigation of the response characteristics of hingeless rotors

at high advance ratios. This work was carried out on a 7.5-ft-diam rotor model in

the AFDD 7- by 10-Foot Wind Tunnel (fig. 12) under a contract with Lockheed Calif-

ornia Company. The objective was to obtain a comprehensive set of data to define

the static and dynamic response characteristics of typical hingeless rotors to

support applications, including vehicle feedback control systems for stability

augmentation, gust alleviation, and vibration reduction. The tests involved a

simplifed four-bladed rotor having untwisted blades of very high lead-lag bending

and torsional stiffness to emphasize the basic flapping response dynamics. The

model was operated at sufficiently low lift and tip speeds that stall and compres-

sibility effects were largely avoided. This series of tests is described by

Kuczynski and Sissingh (refs. 129,130), Kuczynski (ref. 131), and London et al.

(ref. 132).

Very low thrust testing in hover and forward flight up to advance ratios of

1.75 for high flap stiffness (p = 1.33 - 2.33) is described in reference 129. Rotor

thrust, roll, and pitch moments were measured in response to steady-state collec-

tive, cyclic, and shaft-angle inputs. In reference 130, harmonic excitation of the

cyclic control was introduced to determine the rotor thrust, pitch, and roll moment

frequency response functions in hover and forward flight, up to _ = 1.44. Steady-

state testing was carried out for lower flap stiffness (p = 1.17) and advance ratios

from _ = 0.07 to 0.44. In reference 131, the blade-root bending stiffness was

reduced to achieve blade-flap frequencies (p = 1.125 to 1.28) more representative of

typical hingeless rotors. For these tests both the cyclic controls and rotor shaft

were harmonically excited for the frequency-response tests. The last series of

tests (ref. 132), was intended to gather data for moderate and high rotor thrust

levels at low to moderate advance ratios. Advance ratios included _ = 0 to 0.5

and collective pitch ranged from 0° to 20° . Again, static and harmonic cyclic and

shaft motion excitations were applied.

Static inflow model- One objective of these 7.5-ft model investigations was to

verify a rotor-response analysis based on linear quasi-steady aerodynamics to pre-

dict the flapping response of a rotor blade in high-advance-ratio forward flight for

low-lift conditions without stall or compressibility. Measured data from static

control response derivatives (thrust and hub moment coefficients, CT, CL, CM, with

respect to collective and cyclic pitch, 8o, 8s, 8c) were compared to a rotor-blade

flapping response analysis including several elastic flap bending modes, linear

quasi-steady aerodynamics with reversed-flow effects, and a harmonic balance solu-

tion procedure retaining an arbitrary number of harmonics (ref. 133). Comparisons

of data and theory revealed very substantial quantitative and qualitative differ-

ences, especially at low advance ratios. Those differences could not be explained

in terms of any known modeling errors and led to consideration of the effects of

induced inflow.
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The results of these investigations were reported by Ormiston and Peters

(ref. 134). First, the steady-state momentum theory inflow models of Sissingh,

Curtiss, and Shupe were formulated in terms of matrix equations to relate perturba-

tions in the inflow gradients to perturbations in the thrust, roll moment, and pitch

moment of the rotor. These perturbation inflow gradients characterized in a rela-

tively simple way the complex nonuniform induced-velocity field of a lifting

rotor. They represent a time- and space-averaged measure of the mean, lateral, and

longitudinal gradients of the rotor-induced inflow distribution. This inflow model

takes the form of a diagonal matrix of coupling coefficients, the L matrix, that was

easily combined with the rotor-blade response analysis of reference 133. In hover
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and where _ is the mean induced inflow of the rotor.

This model was then incorporated in the flapping response analysis described in

reference 134. As shown in figure 13, it brought the theoretical predictions and

experimental data into excellent agreement for the hover condition. The effect of

the inflow on the rotor moment response derivatives is simply a result of the fact

that a perturbation thrust is accompanied by a like perturbation in inflow. For

example, increased blade pitch increases rotor thrust which increases inflow, reduc-

ing the angle of attack, and thereby reducing a part of the original thrust

increase. This effect reduces the rotor thrust derivative. The same effect occurs

for rotor pitch and roll moments. Since the sensitivity of inflow perturbations is

inversely proportional to the mean rotor inflow, the effect illustrated in figure 13

is much more pronounced at low rotor thrust than at high rotor thrust. The momentum

theory concept works well in hover where the distribution of inflow perturbations

corresponds closely to the distribution of rotor-blade lift perturbations. This

situation does not hold in forward flight and the simple diagonal L-matrix was not

nearly as successful in correlating with the experimental data. This led to the

search for a more general L-matrix that would include off-diagonal coupling between

inflow and loads.

Simple vortex models postulated in reference 134 were more successful than

momentum theory but the best result was a numerical empirical model for the L-matrix

generated by a parameter identification process to provide the best fit for the

measured rotor derivatives. Figure 14 shows the measured rotor control derivatives

in forward flight compared with the two different inflow models: momentum theory

and the empirical model. As noted above, momentum theory is not satisfactory for

forward flight, whereas the empirical model gives good results, confirming the

utility of the general L-matrix form of the inflow model. It may be seen that the
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effects of inflow are most pronounced at low advance ratios. Again it is noted that

these results are for the nonlifting rotor condition.

To illustrate the effect of thrust and advance ratio on the sensitivity of

rotor derivatives to the steady-state perturbation inflow model, figure 15 shows a

typical hub-moment derivative calculation with and without the inflow. The mean

inflow _ is a measure of the rotor thrust. In hover, the hub-moment derivative

vanishes for zero thrust (_ = 0). In forward flight the effect of inflow decreases

with advance ratio.

Dynamic inflow model- Although an understanding of the effects of induced

inflow on rotor response was not one of the original objectives of the Lockheed

experimental program, the results were significant for hingeless rotors with large

control derivatives and their important role in vehicle response and handling quali-

ties. The effect of induced inflow on articulated rotor control characteristics

received little attention because articulated rotor hub moments are small to begin

with. Beyond the effects on stability and control, the effects of inflow were the

subject of considerable speculation regarding air and ground resonance stability.

It was theorized that air and ground resonance stability of hingeless rotors bene-

fited substantially from the high rotor flap-damping characteristic of hingeless-

rotor blades. It was further speculated that loss of rotor damping at low rotor

lift (analogous to reductions of hub-moment derivatives) might therefore degrade the

ground resonance stability of hingeless-rotor helicopters. Because ground resonance

is a dynamic phenomenon, it was also postulated that such a reduction in rotor flap

damping at low rotor thrust might not occur for unsteady motions at the ground-

resonance frequencies. Therefore, it was of interest to determine the transient

response characteristics of the perturbation inflow mode.

At this point Peters developed a formulation to model the transient response of

the static inflow model (ref. 135). He assumed that the inflow perturbations would

respond with a first-order time lag to perturbations in the rotor airloads. This is

equivalent to postulating an apparent mass for the air, where the inertia of the air

mass prevents the static perturbation inflow from establishing itself instanta-

neously in response to rotor airload perturbations. Combining the static inflow

model with the apparent mass terms, Peters set forth the inflow model now known as

dynamic inflow theory.
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The apparent mass Km and apparent inertia KI were taken from potential flow

solutions for impermeable disks. This formulation for the apparent inertia terms
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was a generalization of the approach used by Carpenter and Fridovich (ref. 128) to

model the unsteady uniform inflow for a rotor with unsteady thrust response. In

equation (2), a mass-flow parameter, V, allows the L-matrix to be applied for com-

binations of thrust (_), climb (X), and forward flight (_)

2

V : _ + (x + _)(X + 2_) (3)

_2 + (_ + _)2

Peters also developed a complex lift-deficiency function (for roll and pitch)

that included the time-delay effects. That function involves a reduced frequency

based on the steady inflow velocity. This established the strong relationship

between dynamic inflow theory and other theories of unsteady aerodynamics.

The Peters dynamic inflow model was first correlated with experimental data

obtained by Hohenemser and Crews. Here the blade pitch of a small two-bladed hover-

ing rotor model was harmonically excited in the rotating system. The resulting

blade flapping was measured over a wide range of frequencies. Crews et al.

(ref. 136) compared the results calculated using the dynamic inflow theory with

measured data as shown in figure 16 and confirmed the excellent representation

provided by the very simple dynamic inflow formulation although they used time-

constants chosen to give a best fit with the data instead of the KM and KI values
of Peters.

More extensive correlations were carried out by Peters, with the 7.5-ft-diam

Lockheed model-rotor data further confirming the success of the dynamic inflow

theory in representing the perturbation wake effects over a wide frequency range in

hover and forward flight (ref. 135). Typical hover results presented in figure 17,

are based on the measured data from references 130 and 131; they show that the

contribution of static inflow alone is adequate at low frequencies but actually

worsens the correlation at higher frequencies. At higher frequencies, predictions

without any perturbation inflow are better than including static inflow alone.

Adding the apparent mass effects to static inflow corrects the prediction at higher

frequencies without appreciably influencing the results at low frequencies. The

full dynamic inflow model thus provides a very satisfactory result over the full

range of frequencies. Similar results are observed in forward flight as shown in

figure 18; here the static inflow is based on the empirical inflow model.

In addition to the investigations based on the 7.5-ft model-rotor data,

Hohenemser and his associates carried out extensive experimental studies of dynamic

inflow under AFDD support. Although the original intent was to study rotor-blade

flapping response to stochastic excitation, it was evident that the results of basic

frequency response tests did not agree with theory, as noted previously. Hohenemser

and Crews presented results in both hover and forward flight for the flapping

response to harmonic blade pitch excitation of a 16-in.-diam torsionally rigid,

two-bladed model rotor (ref. 137). Progressing and regressing cyclic pitch excita-

tion was accomplished by a unique variable-frequency pitch-control mechanism in the

rotating system that avoided free-play problems of conventional swashplate, actua-

tors, and pitch-link mechanisms in the nonrotating system. This mechanism also
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permitted excitation of progressing and regressing blade flapping over a wide

frequency range. Test data were obtained in hover and advance ratios up to 0.8, for

low to moderate values of collective pitch. A description of the two-bladed model

and initial test results were also reported by Hohenemser and Crews (ref. 138).

As discussed above, these data were compared with dynamic inflow theory in

reference 136. Hohenemser and Crews obtained additional data for a four-bladed

rotor model in hover and forward flight, including hot-wire measurements of the

unsteady downwash in the hover condition (ref. 139). Since the solidity of the

four-bladed rotor was larger than that of the two-bladed rotor, the effects of

dynamic inflow were also larger. Further measurements of unsteady downwash were

obtained in reference 140.

Hohenemser and his associates also introduced the use of formal parameter

identification theory to determine the inflow gains and time-constants associated

with the dynamic inflow mode (refs. 141-147). These techniques were based on mea-

surements of transient response obtained from the small-scale rotor model following

modifications to the cyclic pitch excitation system. The identified coefficients

for the inflow model were in very close agreement with momentum theory in hover.

Identification of forward flight inflow parameters was not as successful as in

hover, a result of the inability to excite collective modes.

Refined theory- The next significant refinement of dynamic inflow was the

development of a rigorous aerodynamic formulation for the steady-state forward

flight perturbation inflow model, the L-matrix. Although the empirical model was

accurate and quite satisfactory for the rotor in edgewise flow and low rotor lift,

it did not extend to very low advance ratios and, therefore, could not transition

continuously to hover. Furthermore, it lacked a rigorous theoretical basis and

suffered numerical singularities at certain advance ratios.

For these reasons researchers began to pursue more satisfactory alternatives.

For a simplified aerodynamic formulation, such as dynamic inflow, an actuator disk

theory was considered an appropriate basis on which to develop a more rigorous

formulation. Following early NASA research (e.g., ref. 148) on actuator disk vortex

theory models, Ormiston represented the rotor loading as a series of azimuthal and

radial distributions of bound circulation (ref. 149). The Biot-Savart law was used

to determine induced inflow influence coefficients associated with each circulation

function. With a sufficient number of circulation functions, the L-matrix could be

determined. This approach was not carried to completion and the solution to the

problem awaited the efforts of other investigators. Mangler had previously calcu-

lated the induced flow for an actuator disk representation of a rotor (ref. 150).

He used the potential-flow solution discovered by Kinner, who represented the aero-

dynamic loading of a circular disk by a complete series of radial and azimuthal

pressure functions. Joglekar and Loewy, extended the Mangler work and evaluated the

induced inflow for additional pressure functions. (ref. 151).

Using Joglekar and Loewy's work as a basis, Pitt and Peters successfully devel-

oped a rigorous, elegant, and practical L-matrix for dynamic inflow theory

{refs. 152-154). They found that the Kinner potential functions would yield the
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matrix coefficients analytically in closed form as a function of advance ratio and

disk angle of attack. These coefficients were applicable for any advance ratio and

at any disk angle of attack. Furthermore they extended the Kinner theory to the

unsteady case and showed that under the assumption that velocities are mutually in

phase, the exact potential-flow theory takes on a form identical to the dynamic-

inflow theory of equation (2). The apparent-mass terms depend on the spanwise lift

distribution but agree with those for an impermeable disk for the simplest distribu-

tions. The L-matrix is the closed-form static inflow result and is insensitive to

the details of lift distribution. The Pitt-Peters dynamic inflow theory is given by
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where V is given by equation (3) and a is the wake angle of attack at the rotor

disk. In hover (a = 90°), the theory reduces identically to momentum theory and in

edgewise flow (a = 0°) it takes on a structure very similar to that of the empirical

model• At intermediate disk angles, the L-matrix of equation (4) agrees with

results extracted from a prescribed-wake discrete vortex element analysis.

The Pitt-Peters dynamic inflow model was exensively compared with experimental

data by Gaonkar and Peters (ref. 155) using the original data of references 129-131,

including data not used in the previous correlations. Figure 19 shows typical

comparisons for static derivatives and although the Pitt-Peters does not agree quite

as well as the empirical model, it represents the major physical effects very

well. Figure 20 gives a typical correlation of unsteady data for rotor response in

forward flight•

Effects of dynamic inflow on rotorcraft stability- As described above, dynamic

inflow is a relatively simple model of the unsteady aerodynamics of the rotor wake

that is suprisingly effective and accurate in representing the static and low-

frequency dynamic inflow response phenomena• Since the theory is expressed in a

time-domain differential-equation form it is a simple matter to incorporate it into

rotorcraft stability analyses. A number of these investigations have provided

further understanding of the nature of dynamic inflow in addition to demonstrating

improvements in prediction accuracy available by including dynamic inflow effects•

It may be noted that using such an approach constitutes an approximation for the

more rigorous finite-blade (as opposed to an actuator disk), three-dimensional

unsteady aerodynamic theories discussed in previous sections. In effect, dynamic

inflow theory in conjunction with quasi-steady aerodynamics for the rotor blade

airloads represents a low-frequency approximation to Loewy theory.
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As noted, dynamic inflow theory is easily incorporated in rotorcraft dynamic

analysis. Ormiston studied the effect on rotor flap dynamics; flap damping was

greatly affected at low rotor thrust and the effect varied significantly between the

regressing, collective, and progressing modes (ref. 156). The dynamic inflow model

introduces additional degrees of freedom, leading to inflow modes similar to aug-

mented states found in other finite-state unsteady aerodynamic theories. Peters and

Gaonkar found similar results for rotor flap-lag stability in forward flight

(ref. 157). Although dynamic inflow mainly influences the rotor-blade flap modes,

coupling between blade flap and lead-lag motions results in a secondary effect of

dynamic inflow on lead-lag damping. It was found as a result that the rotor regres-

sing lead-lag mode was significantly influenced by dynamic inflow.

In another investigation, Bousman encountered significant discrepancies between

theory and small-scale model experimental data for damping of coupled rotor-body

roll and pitch-mode damping at low rotor thrust conditions (ref. 158). It was

postulated that these low measured damping levels were attributable to the effects

of dynamic inflow for reasons similar to rotor-response results shown above.

Gaonkar et al. performed coupled rotor-body stability analyses including dynamic

inflow and confirmed the hypothesis (ref. 159). In addition, the effects of dynamic

inflow also accounted for anomalies in regressing lead-lag damping of ground- and

alr-resonance modes noted in Bousman's results. Subsequently, Johnson

(refs. 160,161) presented predictions of coupled rotor-body frequencies with and

without dynamic inflow and compared them with Bousman's data as shown in fig-

ures 21(a) and 21(b).

For rotor speeds above 400 rpm, predictions of regressing inplane mode fre-

quency (_R) without dynamic inflow correlate well with data in figure 21(a). Corre-

lation of predicted body-roll-mode frequency (¢) is fair but predictions of body

pitch (e) and flap regressing (SR) modes are poor. However, when dynamic inflow is

included (fig. 21(b)), all of the calculated frequencies agree with the experimental

data. Of particular interest is the branch labeled k. The analysis identified

this as a coupled inflow and flap regressing mode dominated by the inflow degrees of

freedom. These important results show that in effect, the inflow model completely

changes the character of the coupled rotor-body dynamics for this configuration.

Thus, one would not expect to be able to predict rotor-body dynamics without dynamic

inflow.

Several additional works on dynamic inflow might be noted. Gaonkar et al.

(ref. 162) and Nagabhushanam and Gaonkar (ref. 163) investigated the properties of

extended dynamic inflow models, including a 5 x 5 L-matrix in place of the 3 x 3

L-matrix described above. The 5 x 5 L-matrix model included second-harmonic cyclic

inflow degrees of freedom and associated second-harmonic components of the rotor

airload distribution. It was found that if the number of inflow degrees of freedom

exceeded the number of blades in the rotor, inconsistent results for rotor dynamic

characteristics would be obtained. Later work indicated that the inconsistency was

due to an incorrect assumption regarding the radial distribution of lift for the

second-harmonic airload.
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More recent developments include the extension of dynamic inflow theory into a

higher frequency range. The original work of Pitt and Peters allowed for an arbi-

trary number of harmonics of induced flow, although only two were used. As shown by

Gaonkar and Peters in reference 164, it now appears that by including additional

harmonics, the theory of dynamic inflow will automatically include a three-

dimensional version of Loewy theory (for hover and forward flight) which implicitly

includes a near-wake approximation to the Theodorsen function. Correlations with

data showed that the new theory is superior to former unsteady theories for all

cases considered.

Significant progress has been made in development, validation, and application

of rotor dynamic inflow theory. It offers an efficient and effective tool for

expanding capabilities in analyzing rotorcraft aeroelastic stability.

SOLUTION METHODS

This section addresses Army-NASA contributions to the development of methods

for solving rotorcraft aeroelastic stability equations. The following material

deals with automated equation derivation, solution of the dynamic equilibrium equa-

tions, and stability solutions using both Floquet theory and perturbation methods.

Automated Symbolic Manipulation

A relatively recent development in rotorcraft aeroelastic stability is the

application of symbolic manipulation programs to derive rotorcraft equations of

motion. Because of the complexity of the equations of motion for even a moderately

sophisticated rotorcraft model, derivation of the equations by hand is a tedious,

time-consuming, and error-prone process. With this stimulus some very promising

work has been carried out to automate the derivation of rotorcraft equations of

motion. Nagabhushanam et al. described a self-contained FORTRAN IV symbolic proces-

sor, HESL (Helicopter Equations for Stability and Loads) that is capable of both

deriving and solving rotorcraft stability equations (ref. 165). In contrast to

general-purpose manipulations such as FORMAC or MACSYMA, HESL is specifically

designed for rotorcraft applications. This processor derives state equations for a

given ordering scheme, including energy expressions, generalized aerodynamic forces,

the Lagrangian formulation, linear perturbation equations, and the multiblade coor-

dinate transformation. It also carries out the subsequent numerical computations to

determine system stability. A flowchart for these processes is shown in fig-

ure 22. This processor was used by Reddy (ref. 166), Reddy and Warmbrodt

(ref. 167), and Reddy (ref. 168) to treat the flap-lag-torsion stability of an

elastic blade, including dynamic inflow, in hover and forward flight. The numerical

results, compared with previously published results, indicated the powerful

capability represented by this approach. Typical results shown in figure 23 (from

ref. 166,293) for flap-lag-torsion stability of an elastic hingeless rotor blade in

hover are compared with results obtained using the Hodges-Dowell equations
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(ref. 8). The lead-lag damping versus collective pitch shows small differences that

Reddy (ref. 166), was able to relate to terms in the structural and aerodynamic

operators of references 8 and 28.

A similar approach using MACSYMA was described by Crespo da Silva and Hodges,

who investigated computerized symbolic manipulation to develop the equations of

rotor-blade stability in forward flight and solved them using a multiple time-scales

perturbation analysis (ref. 169). The derivation and the solution were both part of

a single operation involving MACSYMA. Also, the equations used by Crespo da Silva

and Hodges were derived by symbolic manipulation, and portions of the computer

program used to solve the equations were output from MACSYMA (ref. 31).

Solution for Dynamic Equilibrium

In general, many rotorcraft aeroelastic stability problems are governed by

nonlinear equations. However, for many important cases, it is desirable to deter-

mine the stability characteristics from linear perturbation equations of motion

about a steady-state equilibrium solution of the nonlinear equations. In the hover

condition, the nonlinear equilibrium solution is generally constant and the linear

perturbation equations are constant-coefficient, ordinary differential equations.

In the forward flight condition, the nonlinear equilibrium solution is generally

periodic in time (dynamic equilibrium) and the linear perturbation equations have

periodic coefficients. In either case, standard eigenanalysis or Floquet analysis

techniques are available to determine stability characteristics. The solution for

the steady-state dynamic equilibrium solution is not as straightforward.

There are actually two tasks involved in the determination of the dynamic

equilibrium solution. First, even if the rotor collective and cyclic pitch controls

are known, there is the problem of finding the periodic solution to a set of nonlin-

ear differential equations with periodic coefficients. This is complicated by the

fact that the periodic solution may not be stable. The second problem is that the

blade controls are generally not known a priori. Instead, the analyst is supplied

with a set of trim constraint equations (e.g., six components of force and moment

equilibrium) that must be satisfied. Therefore, the second response problem is to

find the unknown controls (an inverse problem), as well as the periodic response

associated with the unknown controls such that the vehicle satisfies the trim con-

straints. Over the past 10 years, considerable government-funded work has been

directed at these important issues. This work has resulted in a number of solution

strategies for both the periodic solution (response) and the trim-control solution.

The periodic response problem is reviewed first. For the hover case, this is a

static response which can be solved by Newton-Raphson or other nonlinear equation

solvers; for example, as in references 6 and 15. In forward flight, however, the

problem is dynamic response. The most fundamental solution strategy is that of

simple time-marching. Gaonkar et al. showed that Hamming's modified predictor-

corrector is among the most cost-effective marching algorithms (ref. 170). However,

recent work by Panda and Chopra has also shown that finite elements in time can also

be competitive, provided they are correctly formulated in a bilinear-operator
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notation (ref. 171). The problem with time-marching of any kind, however, is that

it becomes cumbersome as damping decreases; and it is not feasible at all for

unstable systems. This is because time-marching will not converge to an unstable

equilibrium. Therefore, other methods have been developed for the periodic-response

problem that can generally be divided into two categories.

The first category is that of transition-matrix methods. These rely on the

transition matrix, or an approximation to it, over one period of motion in order to

iterate on the periodic equilibrium. For linear problems, convergence is assured

provided there are no neutrally stable eigenvalues with integer-multiple frequen-

cies. For nonlinear problems, the system is assumed linear in each iteration. Such

methods have proven very robust in terms of finding the solution. The method of

Schrage and Peters finds the eigenvalues and periodic eigenvectors of the approx-

imate transition matrix and uses modal expansion to determine the response

(ref. 172). The methods of Friedmann and Shamie (ref. 173), Friedmann and

Kottapalli (ref. 174), and Panda and Chopra (ref. 171) use the transition matrix in

a convolution integral to generate the linearized response in each iteration. A

similar method, called periodic shooting, used by O'Malley et al. in reference 175,

gives numerically identical results but without the need for convolution or expen-

sive eigenanalysis. A good review of transition-matrix methods is given by

Friedmann (ref. 176).

The second category of methods for the periodic-response problem is that of

harmonic balance techniques. These place the equations in the frequency domain

before solving and, as with transition-matrix methods, they assume a linear solution

within each iteration (ref. 177). The robustness of these methods depends criti-

cally on the extent to which nonlinearities are linearized and placed on the left-

hand side of the equations. Strategies that include only inertial terms on the

left-hand side often fail; and strategies that linearize all terms are very robust.

Methods of trim solution will now be addressed. Trim strategies can generally

be divided into three categories. The first category is that of algebraic trim

equations which must be solved along with the response. In some cases, these are

from simplified equtions and can be solved in closed form (ref. 178). In other

cases, these equations come naturally from a full harmonic balance and must be

solved iteratively. A second category of solution strategies is Newton-Raphson

iteration. Here, no explicit equations are developed, but controls are adjusted

based on numerically determined improvements in the constraint conditions. This has

been the most widely used method for large, production analysis codes: O'Malley

et al. (ref. 175) and Johnson (ref. 94). However, the method is not robust and

often fails to converge. To combat this, analysis codes often apply the iteration

only to a simplified set of rotor equations. Thus, the system is often not truly

trimmed. The third category of strategies is that of auto-pilot equations

(ref. 179). Here, a controller is designed to continuously monitor equilibrium

conditions and update the pilot controls accordingly. Gains and time-constants are

critical; and sometimes an adaptive controller is needed.

The government-sponsored research referenced above has not only developed the

techniques listed, but it has also applied them to a large class of rotor
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problems. These applications have led to the conclusions listed above and have

identified natural matches between methods. For example, the automatic pilot is

ideally suited to time-marching techniques (ref. 179), and the Newton-Raphson tech-

nique for controls is ideally suited for combination with periodic shooting

(ref. 180). Furthermore, each of these two combinations has a set of problems

(depending on damping and order) for which it is optimal. Algebraic equilibrium

equations are naturally amenable to the harmonic-balance method, and these are

useful in problems of rotor-body coupling or when the aerodynamics are in the fre-

quency domain. Thus, the government-sponsored research in response and trim has

developed to the point that the new methods can be applied to practical problems.

Stability Analysis

In the hover condition for constant-coefficient equations of motion, stability

is normally determined from the characteristic roots obtained from standard eigen-

analysis techniques. Hodges presents a simplified algorithm for determining stabil-

ity when it is not necessary to evaluate all of the eigenvalues of a system of

linear equations (ref. 181). This method is computationally advantageous for cases

in which stability must be determined for a large number of system parameter values

as might be the case in constructing stability boundaries.

In the forward flight condition, and in hover with unsymmetric or two-bladed

rotors, the linear stability equations have periodic coefficients. Many investiga-

tors have pursued solutions for this important problem in rotorcraft dynamics.

Although supported in part by the results of previous investigators, Peters and

Hohenemser carried out the first extensive application of multivariable Floquet

theory to problems of rotorcraft aeroelastic stability, primarily the flapping

stability of a single rigid blade in forward flight (ref. 182). Peters generated

the Floquet transition matrix by numerical integration of the equations of motion

for one period, and then determined the corresponding eigenvalues and eigenvec-

tots. Following publication of this work, many investigators began to apply Floquet

theory to rotorcraft aerelastic stability problems. Some of the subsequent work was

intended to reduce the computational cost of generating the Floquet transition

matrix. Friedmann and Silverthorn applied an approximate method developed by Hsu, a

generalization of the rectangular ripple method, to substantially reduce the compu-

tational time for Floquet analysis (ref. 183). Hammond developed a refined version

of the numerical integration technique of Peters that required only a single-pass

integration of the equations for one period, rather than n integrations for an

n-order system (ref. 82). Both these methods are also described by Friedmann et al.

(ref. 184). Further discussion of this subject is contained in Gaonkar et al.

(ref. 170) and Friedmann (ref. 176).

Perturbation Methods

Perturbation methods have been applied to a number of problems in rotorcraft

dynamics and are the object of continuing research. Use of perturbation methods has
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typically fallen into two categories. First there is the use of perturbation

methods in the space domain to approximate vibration frequencies, mode shapes, and

buckling behavior of rotating beams. The significance of this work is mainly in the

results. Peters was able to derive approximate, closed-form solutions to the free-

vibration frequencies and mode shapes for uncoupled flap, lag, and torsion of rotat-

ing, elastic cantilever blades (ref. 185). Hodges later extended this work to

include blades clamped off the axis of rotation (ref. 186). This work was also

extended by Peters and Hodges to obtain simple, closed-form expressions for the

inplane buckling of rotating beams (ref. 187).

The second category is the use of perturbation methods in the time-domain to

obtain information about the response and stability. Tong (ref. 188) and Friedmann

and Tong (ref. 189) used perturbation methods to study nonlinear flap-lag dynamics

of rigid and elastic blades in hover and forward flight. Johnson used perturbation

methods to study the flapping stability of rigid blades in forward flight

(refs. 190-193). Crespo da Silva and Hodges also investigated the application of

perturbation techniques to rotor-blade stability in forward flight (ref. 169). The

significance of this latter work is that it has the potential to bypass Floquet

theory, making use instead of analytical techniques such as the method of multiple

time-scales. Such methods tend to become intractable by traditional manual

approaches. However, when coupled with powerful, general-purpose symbolic manipula-

tion programs such as MACSYMA it becomes a practical tool. This method is yet to be

fully developed for general rotor-blade analysis, however.

3. INVESTIGATIONS OF AEROELASTIC STABILITY CHARACTERISTICS

The previous section described the development of methods to analyze and pre-

dict the aeroelastic stability of a variety of rotorcraft configurations in various

operating conditions. Although methods in themselves tell little about rotorcraft

behavior and stability characteristics, they may be used to generate such informa-

tion. In this section, the results of Army-NASA investigations to study and iden-

tify such behavior and stability characteristics will be described. Such investiga-

tions may involve parametric analyses using the prediction methods described in the

previous section, experimental testing to explore rotorcraft stability characteris-

tics, or correlations of theoretical predictions and experimental data to check

underlying assumptions and validate the theory. All of this is important because

advancing rotorcraft technology is a difficult process, and it requires a thorough

understanding of the fundamental physical behavior of rotorcraft aeroelastic stabil-

ity, whether obtained through analysis or experiment, and it requires a high level

of confidence in theoretical prediction capability that can only be achieved by

careful checking of theory against experimental measurements.

In this section the material is divided into somewhat arbitrary categories,

isolated blade-flapping stability, isolated blade flap-lag stablity, isolated blade

flap-lag-torsion stability, coupled rotor-body stability, bearingless-rotor stabil-

ity, tilt-rotor aircraft stability, and an analysis correlation effort undertaken in
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connection with the ITR/FRR Project. In the section on flap-lag stability, material

on the development of analysis methods for rigid-hinged blades has been included

here instead of in section 2. In addition, the material on coupled rotor-body,

bearingless rotor, and tilt-rotor aircraft stability is arranged differently from

that in section 2.

FLAPPING STABILITY

The flapping stability of a rotor blade in forward flight is a basic problem of

rotorcraft dynamics because it is one of the simplest systems on which to represent

the effects of periodically varying aerodynamic damping and stiffness. Many inves-

tigators have addressed this problem, both to study methods of solving periodic-

coefficient differential equations and to understand the stability characteristics

of rotor blades described by such equations. Peters and Hohenemser significantly

advanced this work both in their introduction of Floquet theory to solve periodic-

coefficient equations and in clearly describing the complex forward flight behavior

of a rigid blade with a flapping hinge (ref. 182). These results illustrated the

existence of parameter regions (such as Lock number and advance ratio) where the

characteristic roots exhibit natural frequencies of half or integer multiples of

rotor speed, 0.5 or I per rev, that remain constant for an extended range of param-

eter values. This only occurs for constant-coefficient systems when the frequency

is zero. Peters and Hohenemser presented numerous plots of damping contours in the

Lock number-advance ratio plane illustrating the effects of pitch-flap coupling,

flap hinge spring stiffness, and hub-moment feedback. A typical result shows

regions of an 0.5 and I per rev natural frequency and the high advance ratio stabil-

ity boundary (fig. 24).

Yin and Hohenemser studied the same stability problem after transforming the

equations into multiblade coordinate form (ref. 194,195). They found that neglect-

ing the periodic terms in these equations, a constant-coefficient approximation

yielded results of acceptable accuracy for the low-frequency modes up to advance

ratios of about 0.8. Hohenemser and Yin extended this work to include the effects

of blade torsion and flap-bending flexibility on stability in forward flight

(ref. 196). The effect of blade flexibility, in comparison with a rigid hinged-

blade model, was shown to reduce flap-mode damping in forward flight, especially at

higher advance ratios.

Johnson applied the perturbation method of multiple time-scales to the rigid

flapping-blade problem in forward flight (refs. 190-193), confirming and clarifying

some details of the results of Peters and Hohenemser. He developed approximate

analytical expressions for the eigenvalues quite accurate for advance ratios up to

about 0.5. Johnson also gave a comprehensive and detailed review of the many ear-

lier studies of this problem before the work of Peters and Hohenemser (ref. 193).

He also presented a thorough discussion of the dynamic behavior of the flapping

blade in forward flight.
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Biggers also investigated the accuracy of constant-coefficient approximations

for this problem (ref. 197). Beginning with the forward-flight, blade-flapping

equations in multiblade coordinate form, he showed that constant_coefficient approx-

imation of these equations was reasonably accurate for moderate advance ratios up to

about 0.5. This was considerably better than would be obtained for a constant-

coefficient approximation of the isolated blade-flapping equations written in the

rotating reference frame. Typical results of Biggers compare the variation of the

flap-mode frequency with advance ratio for a constant-coefficient approximation of

the multiblade flapping equations with exact Floquet analysis results (fig. 25).

Rogers studied blade-flapping stability in forward flight to examine dynamic

stall effects; this work was discussed earlier in section 2. Finally, Crespo da

Silva and Hodges used a computerized symbolic processor to perform a perturbation

analysis of rigid, hinged, flapping-blade stability (ref. 169).

FLAP-LAG STABILITY

Analysis of rotor blade flap-lag degrees of freedom enables the researcher to

investigate the most basic characteristics of cantilever rotor blades, including

both hingeless and bearingless configurations. For articulated rotor blades, flap-

lag dynamics are generally not important unless aeroelastic couplings are introduced

in the blade-pitch control system. Although flap-lag analyses of hingeless rotor

blades omit the important torsion effects and are, therefore, not generally of

practical use, they do permit the underlying structural, inertial, and aerodynamic

coupling of flap and lead-lag motions to be investigated with more clarity. Some of

the earliest work in this field was carried out by Young who drew attention to

nonlinear flap-lag coupling, generating some controversy in the process

(ref. 198). Hohenemser and Heaton then studied the same problem and concluded that

the effects of the nonlinearities could be adequately accounted for by linearizing

the flap-lag equations for small-perturbation motions (ref. 199). At this point

government researchers began to investigate these problems.

Hover Analytical Investigations

For investigations of flap-lag stability in the hover conditions, results of

rigid-blade analyses are treated separately from results of elastic-blade analyses.

Rigid blade analyses- In keeping with increased interest in hingeless rotors,

and a lack of information about such systems, Ormiston and Hodges initiated a study

of flap-lag stability to gain a general understanding of their basic aeroelastic

stability characteristics (ref. 3). They used the rigid-hinged-blade analysis of

Hohenemser and Heaton (ref. 199) as a starting point. The flap-lag equations are

fundamentally nonlinear, and a proper formulation for stability analysis requires

linearization to derive small-perturbation equations of motion. Standard eigen-

analysis then yields the characteristic roots that define stability of the small-

398



perturbation motions. Hohenemser and Heaton applied such a procedure, thereby

improving on Young's original flap-lag analysis. In reference 3, Ormiston and

Hodges refined the analysis of Hohenemser and Heaton, correcting an error in the

linearization procedure of reference 199, and investigated the stability character-

istics of hingeless rotor blades for a wide range of parameters. These investiga-

tions used the simplified, rigid blade with discrete spring-restrained hinges to

represent the bending flexibility of a cantilever elastic blade as originally pro-

posed by Young (ref. 200). This approach simplified the equations of motion and

clarified the mechanisms that determined flap-lag stabiity.

Ormiston and Hodges extended this concept to provide a more complete represen-

tation of hingeless rotor blades, by introducing a double spring system to distin-

guish between the flexibility contained in the hub inboard of the pitch bearing and

the flexibility contained in the blade outboard of the pitch bearing (fig. 26(a)).

Thus the rigid-hinged blade model shown in figure 26(b) included two sets of flap

and lead hinge springs, one set fixed inboard of the pitch bearing and a second set

outboard of the pitch bearing and rotating with the blade as pitch angle changes.

The parameter R, generally varying between 0 and I, defined the hub-to-blade distri-

bution of flexibility. When all of the bending flexibility is located in the hub

and none in the blade, there is no structural flap-lag coupling and R = O. When the

flexibility is in the blade and not in the hub, R = I, and the structural flap-lag

coupling is roughly proportional to blade pitch angle. Combinations of hub and

blade flexibility are represented by intermediate values of R according to a simple

formula. Curtiss has also proposed additional versions of this hub and blade hinge

spring model (ref. 201).

It should also be noted that for the rigid-blade model, the sequence of rota-

tions of the rigid blade is defined by the chosen arrangement of physical hinges; in

reference 3, a lag-flap sequence was chosen. This means that the flap hinge is

radially outboard of the lead-lag hinge and moves with the blade during lead-lag

motion. The kinematics of the flap-lag hinge sequence are slightly different and

lead to small differences in the aeroelastic stability characteristics comnpared

with the lag-flap hinge sequence, as will be addressed below. The effect of hinge

sequence is much more pronounced when a discrete hinge is also included to represent

torsion of an elastic blade.

The basic flap-lag stability characteristics of the rigid blade in hover were

investigated in reference 3 and are illustrated in figure 27. For rotor blades

having a flap hinge spring (p > 1.0), a flap-lag instability can occur when the

lead-lag natural frequency is close to the flap frequency and when the flap fre-

quency_¢ar(4/3) I/2. The nonlinear inertial and aerodynamic moments produce flap-lag

coupling terms in the linearized perturbation equations that vary in proportion to

blade-pitch angle. Thus the regions of instability in figure 27 expand as blade

pitch increases. The simplified flap-lag equations were used by Ormiston and Hodges

to develop several closed-form expressions to describe flap-lag stability character-

istics and stability boundaries.

The results of Ormiston and Hodges showed the strong influence of flap-lag

elastic coupling; for example, as the structural coupling parameter R increases,
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the region of flap-lag stability in figure 27 shifts to higher lead-lag frequencies

until it ceases to exist for practical configurations. Other results delineated the

differences between stiff- and soft-inplane blade configurations (fig. 28). Soft-

inplane configurations are generally stable, independent of structural flap-lag

coupling, whereas stiff-inplane configurations typically exhibit flap-lag instabil-

ity at some intermediate level of flap-lag structural coupling.

Flap-lag instabilities described are typically relatively weak; a small amount

of structural damping is often sufficient to stabilize the blade. Blade-pitch

couplings, however, may cause very large changes in flap-lag stability. Ormiston

and Hodges included the effects of kinematic pitch-lag coupling with results shown

in figure 29. For soft-inplane configurations, positive pitch-lag coupling (pitch

up with lead) is destabilizing for all values of flap-lag structural coupling. The

behavior of the stiff-inplane configuration is considerably more complex; depending

on the flap-lag structural coupling, both positive and negative pitch-lag coupling

may be destabilizing. Reference 3 also included blade precone, and it was found

that although precone could be either stabilizing or destabilizing, its effect was

not large for torsionally rigid blades. Ormiston attempted to identify aeroelastic

couplings that would augment lead-lag damping to help control coupled rotor-body

instabilities such as air and ground resonance (ref. 202). A combination pitch-lag

and flap-lag elastic coupling was most effective in increasing the damping of the

isolated blade at zero pitch.

Peters used the flap-lag equations of Ormiston and Hodges to derive approximate

but useful closed-form analytical expressions for the lead-lag damping as a function

of the various configuration parameters (ref. 203). He was also able to show that

minimum stability occurs when the blade-tip motion moves along a straight line

bisecting the blade chord and the direction of mean airflow velocity, the axis of

minimum damping.

The rigid-blade flap-lag results of Ormiston and Hodges served to identify many

of the basic characteristics of hingeless-rotor-blade aeroelastic stability, the

nature of destabilizing aerodynamic and inertial flap-lag coupling, the important

role of flap-lag structural coupling, the essential differences between soft- and

stiff-inplane configurations, and how the important effects of pitch-lag coupling

depend on flap-lag structural coupling and lead-lag natural frequency. Much of this

behavior has been reflected in numerous subsequent works that have included blade

elastic bending, torsion, forward flight aerodynamics, and rotor-body coupling.

As noted above, when a continuous elastic blade is modeled in an approximate

way by using a spring-hinged rigid blade, the order of rotations about the discrete

flap and lead-lag hinges will influence the geometric orientation of the blade in

space. The influence of the flap and lead-lag hinge sequence on the stability of

the system was investigated by Kaza and Kvaternik who compared the results obtained

for the flap-lag sequence with results (fig. 27) obtained with the lag-flap sequence

(ref. 204). The change in hinge sequence introduces a small effective pitch-lag

coupling that alters the stability boundaries for low flap stiffness configurations

as shown in figure 30.
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AS originally formulated by Young the rotor-blade flap-lag equations are non-

linear (ref. 198). However, it has been shown that the nonlinear aerodynamic and

inertial terms are relatively weak and that the linearized solutions discussed above

are usually satisfactory. Tong studied nonlinear flap-lag stability of the hinged

rigid blade in references 188 and 205 and determined the regions of linear

instability that would produce stable or unstable limit cycles, as shown in fig-

ure 31. He was also able to estimate limit cycle amplitudes of stable limit cycles

using perturbation methods.

Elastic blade analyses- In addition to studying the flap-lag stability of the

simplified rigid, spring-hinged representation of the elastic cantilever blade,

Ormiston and Hodges also treated a uniform elastic blade, using a modal analysis

method, and showed that with proper treatment of nonlinear aerodynamic and inertial

coupling in the elastic blade equations, the two representations exhibit very simi-

lar behavior (ref. 3). Additional results were reported in reference 4.

Other investigators also studied the flap-lag stability of elastic blades in

hover. In reference 5, Friedmann developed and solved the elastic-blade flap-lag

equations, achieving results similar to those in reference 4, although flap-lag

structural coupling was not included. In references 206 and 207, Friedmann examined

the effects of mode shape on flap-lag stability and showed that the rigid blade with

appropriate hinge offset would agree closely with elastic blade stability bound-

aries, as shown in figure 32. In references 206 and 208 Friedmann found that the

effects of precone had a strong effect on flap-lag stability, although this was

later found to be due to an extraneous term in the equations (ref. 209). Friedmann

and Tong (ref. 189) also studied the nonlinear flap-lag stability of an elastic

blade, using perturbation methods, again identifying regions where linear instabili-

ties result in stable limit cycles; White also studied flap-lag stability of elastic

blades in hover, using a collocation method of solution (ref. 210). His results,

including the effects of flap-lag structural coupling, correspond to those in refer-

ence 4.

Further investigations of elastic blade flap-lag stability were carried out by

Straub and Friedmann, using the finite-element method (refs. 62,64). Typical

results in figure 33 show a comparison of flap-lag stability boundaries for the

finite-element method, and a conventional modal method for a uniform elastic blade

in hover. These results show the basic effect that flap-lag structural coupling

shifts the region of flap-lag instability to increasingly stiff-inplane

configurations as R increases from 0 to I. Reddy compared elastic and rigid-blade

models for flap-lag stability and also included the effects of dynamic inflow

(ref. 166,168).

Effects of unsteady aerodynamics- Only limited investigation of the effects of

unsteady aerodynamics on flap-lag stability have been carried out. Since flap-lag

instability occurs at a low frequency, unsteady aerodynamics has not been considered

important. Kunz (ref. 211) used Theodorsen and Loewy unsteady aerodynamic theories

to calculate flap-lag stability of the rigid, spring-restrained hinged-blade model

of a four-bladed rotor and showed moderately large effects, especially with Loewy

theory, at larger blade-pitch angles, as shown in figure 34. More recently,
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Dinyavari and Friedmann used a finite-state representation of Greenberg's unsteady

aerodynamic theory to calculate flap-lag stability of the rigid-hinged blade model

(ref. 113). Results shown in figure 35 indicate a moderate effect, roughly consis-

tent with results of Kunz using Theodorsen unsteady aerodynamics.

Forward Flight Analytical Investigations

Early work on flap-lag stability of hingeless rotor blades in forward flight

included the original work of Young (ref. 198). Tong and Friedmann also studied

nonlinear flap-lag stability in hover and forward flight using perturbation tech-

niques (refs. 188,189,207,208). In reference 189 they concluded that for moderate

advance ratios the periodic coefficients in forward flight would not have a large

effect on flap-lag stability unless the lead-lag frequency is near 0.5 or 1.0 per

rev.

The analysis of flap-lag stability in forward flight only received serious

attention after the utility of Floquet theory had been widely recognized. This

afforded a practical means of dealing with linear periodic-coefficient equations of

motion. However, the nonlinear properties of the flap-lag equations with reverse

flow introduced some additional problems such as determining a periodic steady-state

solution, satisfying the trim condition of the rotor, and obtaining linearized

equations. Early investigations of flap-lag stability in forward flight were con-

ducted by Friedmann and Silverthorn, using an elastic-blade model and a modal solu-

tion method (refs. 212-214). An approximate method was used to treat the reversed-

flow region and a simplified trim procedure was used, based on the hover trim solu-

tion. Nevertheless, stability results were sensitive to several system parameters,

including reversed flow, mode shapes, and flap-lag structural coupling. Typical

results shown in figure 36 illustrate the effect of reverse flow on lead-lag

damping.

An extensive investigation of hingeless rotor blade flap-lag stability in

forward flight was conducted by Peters in (ref. 215). This study was based on the

hinged, rigid-blade model having reverse flow and including contributions to the

periodic coefficients arising from the steady-state blade response and cyclic pitch

associated with specific forward flight trim conditions. Figure 37 illustrates the

importance of different trim conditions on the variation of lead-lag damping with

advance ratio. Figure 38 illustrates one of the unusual properties of periodic-

coefficient systems. For configurations with lead-lag natural frequencies close to

I or 0.5 per rev, instabilities may occur that exhibit the integer or half-integer

frequencies characteristic of periodic-coefficient systems. For the flap-lag prob-

lem, these regions of parametric instability are quite restricted. Other configura-

tions exhibit "conventional" instabilities; that is, the frequencies may take on any

value.

Figure 39 summarizes the effects of flap-lag structural coupling on forward

flight flap-lag stability and, as discussed previously, the stiff-inplane configura-

tion is more sensitive to these effects than the soft-inplane configuration. These

results illustrate the basic flap-lag stability behavior of soft- and stiff-inplane
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rotor blades in forward flight. Peters also presented results showing the effects

of pitch-flap and pitch-lag kinematic couplings on stability.

Kaza and Kvaternik (ref. 204) studied flap-lag stability of the rigid-hinged

blade in forward flight, including approximating the periodic-coefficient equations

with the constant-coefficient set obtained by transforming the blade equations in

the rotating system to multiblade coordinate equations in the fixed system, and

dropping periodic-coefficient terms, as Biggers did in reference 197 and as is shown

in figure 25. The results, shown in figure 40 for the same case considered by

Peters (fig. 39), illustrate that the collective and regressing lead-lag modes from

the constant-coefficient equations are quite adequate up to relatively high advance

ratios. A similar study was carried out by Gaonkar and Peters (ref. 216). Gaonkar

and Peters investigated the effects of dynamic inflow on hinged-rigid blade flap-lag

stability in forward flight (ref. 157). Lead-lag damping of stiff- and soft-inplane

configurations is illustrated in figure 41; depending on the particular configura-

tion parameters and the advance ratio, this unsteady aerodynamic effect may signifi-

cantly alter the stability.

In reference 173, Friedmann and Shamie revisited the elastic-blade flap-lag

stability problem in forward flight by considering more representative trim condi-

tions and including the periodic equilibrium solution in the linearized stability

equations. Their results, an example of which is shown in figure 42, confirmed the

findings of Peters about the sensitivity of stability to the details of the trim

solution. In a related work, Shamie and Friedmann studied the problem of flap-lag

stability of a two-bladed teetering rotor in forward flight and compared the results

with those of a single isolated blade (ref. 217).

Finite-element techniques have also been applied to the elastic-blade flap-lag

problem in forward flight; typical results of Straub and Friedmann (refs. 63,64) are

shown in figure 43. Here, both the first and second lead-lag mode damping are

presented for a trimmed flight condition. Finally, Reddy and Warmbrodt calculated

flap-lag stability of an elastic blade in forward flight, using modal equations and

retaining two bending modes for each bending direction (ref. 218). The results,

shown in figure 44 for soft- and stiff-inplane blades with and without flap-lag

structural coupling, are for trimmed flight conditions and may be compared with

rigid-blade results in figure 39. These results were developed using a symbolic

processor to generate and solve the equations.

Flap-Lag Experiments in Hover and Forward Flight

A series of experiments using small-scale model rotors was conducted at the

Aeroflightdynamics Directorate specifically to verify the results of analytical

investigations of the flap-lag stability of simplified rigld-hinged-blade models in

hover and forward flight. The flap-lag system does not represent a practical con-

figuration since typical rotor systems generally exhibit varying degrees of pitch

control and blade torsional flexibility. However, from a research point of view,

the restricted flap-lag experiment greatly simplifies the process of correlating and

interpreting analytical and experimental results. These experiments were designed
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to minimize as many sources of error and uncertainty as possible in order to provide

a clear test of the essential features of the flap-lag stability analysis. To this

end the blades were designed to be as rigid as possible in bending and torsion.

Flexures placed at the blade root to represent spring-restrained hinges were used to

eliminate, as much as possible, the nonlinear damping of hinges and bearings. The

hub-support system was designed to be sufficiently stiff to maintain a fixed hub,

isolated-blade condition.

The experimental technique consisted of initiating transient lead-lag motions

and measuring the decay rate to determine damping of the lead-lag mode. Figure 45

illustrates the hover test stand experimental apparatus and figure 46 the layout of

the hub flexures used to simulate flap and lead-lag hinges. The straight flexures

represented simple flap and lead-lag hinge springs; the skewed flexures provided, in

addition, kinematic pitch-flap and pitch-lag aeroelastic couplings. Both the

straight and skewed flexures could provide flap-lag structural coupling if they are

rotated in pitch with the blade. Hover tests were performed using a two-bladed

5.5-ft-diam rotor.

The typical results in figure 47 are from Ormiston and Bousman (refs. 117,219,

220); they show the variation of lead-lag damping with blade-pitch angle for two

different blade and hub configurations. The experimental results in figure 47(a)

confirm the destabilizing effects of flap-lag aerodynamic and inertial coupling

predicted by linear analysis. In addition, however, at high pitch angles the linear

analysis fails to predict the abrupt onset of instability. This was subsequently

determined to be due to airfoil stall that with suitable modification to the analy-

sis, could be reasonably well predicted. The results in figure 47(b) illustrate a

stiff-inplane configuration where the effects of stall were stabilizing. Another

experimental investigation was aimed at confirming the effectiveness of aeroelastic

couplings postulated by Ormiston (ref. 202) to enhance lead-lag damping of hingeless

rotor blades. Results of Bousman et al. (ref. 221) shown in figure 48 illustrate

how combined flap-lag structural coupling and pitch-lag coupling significantly

increase the rotor-blade lead-lag damping.

Another flap-lag stability experiment to investigate intermediate values of

flap-lag structural coupling (R _ 0.5), using blades with distributed bending flex-

ibility, was conducted by Curtiss and Putman at Princeton University (ref. 222),

using the apparatus and rotor hub described above. Test results agreed well with

analysis, even though the rigid-hinged-blade analysis was used to model the elastic

blade.

Although a considerable amount of analytical research has been conducted on

forward flight flap-lag stability, relatively little experimental research has been

carried out. An extensive experimental study of flap-lag stability in forward

flight was conducted at the Aeroflightdynamics Directorate and reported by Gaonkar

et al. (ref. 223). A 5.5-ft-diam three-bladed model rotor (fig. 49) similar to that

used for hover experiments described above, was tested up to a moderately high

(0.55) advance ratio. In order to simplify operation and minimize nonlinear lead-

lag damping of pitch bearings, the model did not have a swashplate. Collective

pitch was changed manually and the rotor was trimmed to minimize steady-state blade
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flapping by varying the angle of attack of the rotor shaft. The results in fig-

ure 50 show the variation in lead-lag damping with advance ratio for several shaft

angles at 0 ° and 3 ° collective pitch. Agreement between data and theory is very

good except for the high shaft angle condition at 3° collective pitch. The inclu-

sion of airfoil stall improved the correlation for this case but degraded correla-

tion for the other cases. The detailed mechanisms of the stall influence are not

yet clear since the rotor is operating at moderate lift levels; however, large

angles of attack do exist for some regions of the rotor disc.

These experiments have done much to help our understanding of the dynamic

behavior of hingeless rotor blades and have provided a large body of high-quality

rotor-stability data that is useful for confirming theoretical predictions.

FLAP-LAG-TORSION STABILITY

Flap-lag-torsion stability of cantilever rotor blades represents one of the

important problems in rotorcraft aeroelastic stability. The effects of torsion

generally tend to overpower the effects of coupled flap-lag structural dynamics.

When blade torsion is coupled with flap and lead-lag bending, practical problems in

aeroelastic stability of hingeless and bearingless rotor blades may be addressed.

Articulated rotor blades are not strongly influenced by the structural bending-

torsion coupling so important for cantilever rotor blades. Articulated rotor blades

generally experience flap bending-torsion flutter, a result of unsteady aerodynamics

and chordwise offsets of the airfoil mass, elastic, and aerodynamic centers (cf.

ref. 224}. Much of the research on cantilever blade flap-lag-torsion stability has

focused on the effects of nonlinear bending-torsion structural coupling, _ as will be

illustrated below. However, the chordwise aerodynamic offset couplings are also

important for cantilever rotor blades and they, too, will be addressed.

Hover Analytical Investigations

Before aeroelastic analysis of cantilever rotor blades that are fully elastic

in bending and torsion, a simpler problem was addressed by Friedmann and Tong

(ref. 5). They studied the stability of cantilever blades flexible in flap and

lead-lag bending and with rigid body root pitch motion restrained by pitch-link

flexibility. Results also presented in references 207 and 208 by Friedmann show the

strong effect of root pitch motion stability as shown in figure 51.

With the development by Hodges and Dowell (ref. 6,8) of the general nonlinear

equations applicable to combined bending and torsion of elastic cantilever rotor

blades as described above, means were available to investigate the dynamic stability

characteristics of hingeless rotor blades. Many studies were devoted to analysis of

simple blades having radially uniform properties to help facilitate understanding of

the essential dynamic phenomena. Several early studies of this kind were carried

out by Hodges (ref. 6) and by Hodges and Ormiston (refs. 15,17,225). Typical basic
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results are shown in figure 52 (from ref. 225) where stability boundaries are

plotted as a function of the torsion natural frequency, a measure of torsional

rigidity.

These results illustrate how the introduction of blade-torsion flexibility

progressively alters the stability of the simpler flap-lag bending problem. It may

be seen that the effects of torsion are significant for some configurations even at

quite high torsion frequencies. Also presented are results of calculations that

include the bending-torsion structural coupling but omit torsion dynamics. In this

case the bending-torsion coupling generates effective pitch-lag and pitch-flap

aeroelastic couplings that control stability in a manner consistent with the results

of the simple rigid-hinged blade flap-lag analyses discussed above. Only for very

flexible blades does torsion dynamics significantly alter flap-lag-torsion stabil-

ity, because most of the effect of torsion flexibility is due to structural

coupling.

Because the torsion structural coupling is so powerful, small amounts of blade

precone or droop, usually introduced to reduce steady blade stresses, can have a

large effect on stability. Figure 53 illustrates the influence of precone for

configurations with (R = 1.0) and without {R = O) structural flap-lag coupling

(ref. 15). At low rotor thrust, the steady blade bending counteracting the built-in

precone produces a destabilizing pitch-lag coupling effect that causes a "precone

instability." As thrust increases and the blade equilibrium deflection coincides

with the precone orientation, the destabilizing coupling is removed, and stability

returns. At higher rotor thrust, other instabilities may occur, especially for

stiff-inplane configurations without flap-lag structural coupling. The effects of

droop can be similar to precone. Droop is a built-in flap rotation of the blade

outboard of the pitch bearing, whereas for precone the pitch bearing axis has the

same built-in flap rotation as the blade and hence remains in alignment with it.

The similarity between the effects of precone and droop is determined by the ratio

of pitch-link stiffness to blade-torsional rigidity, f. Results in figure 54 (from

ref. 17) compare the effects of precone and droop on flap-lag-torsion stability

boundaries and show that depending on the value of f, precone and droop have identi-

cal or very different effects on the flap-lag-torsion stability boundaries.

In reference 226, Johnson presented results of a flap-lag-torsion stability

analysis for comparison with the results of reference 15 in order to validate the

analysis of reference 85. Good qualitative agreement was found.

Friedmann extended earlier results by investigating flap-lag-torsion stability

of blades with elastic torsion, using improved equations (ref. 19). These equations

retained root pitch motion and added flap-lag structural coupling and airfoil chord-

wise offsets. Results in figure 55 {from ref. 20) show the effect of aerodynamic

center offsets on stability and divergence boundaries. Friedmann also showed that

structural damping is moderately effective in eliminating the precone instability.

Reddy investigated flap-lag-torsion stability of elastic blades in hover,

including the effects of dynamic inflow (refs. 166,168). His results were obtained

using computerized symbolic manipulation to derive and solve modal equations for
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elastic blades. This permitted an easy means of examining the influence of small

terms in the equations of motion. Figure 56 illustrates the effects of dynamic

inflow on lead-lag damping at a moderate collective pitch angle.

To deal with practical rotor-blade configurations, especially bearingless-rotor

blades, more advanced structural analysis methods are needed and researchers have

begun to address this area. Chopra and Sivaneri (ref. 66,67) applied finite-element

methods to the elastic-blade flap-lag-torsion problem (fig. 57) and demonstrated

close agreement with earlier modal-analysis results from reference 15. More

advanced work by Hong and Chopra treated hingeless rotor blades constructed of

composite materials (ref. 78). Using a finite-element method, they showed how

aeroelastic tailoring of the spar ply layup configuration could stabilize or desta-

bilize the lead-lag mode damping. A root locus plot shown in figure 58 illustrates

these results.

There have been other applications of flap-lag-torsion aeroelastic stability

analysis, including circulation control rotors by Chopra and Johnson (ref. 227) and

constant-lift and free-tip rotors by Chopra (ref. 228).

Effects of Unsteady Aerodynamics

The effect of unsteady aerodynamics on flap-lag-torsion stability in hover has

also been investigated. Pierce and White examined the effect of compressibility on

flap-pitch flutter owing to Theodorsen and Loewy aerodynamics (ref. 229). Friedmann

and Yuan {ref. 110) studied the influence of different unsteady aerodynamic theories

on flap-lag-torsion stability, as shown in figure 59. These theories included

classical incompressible unsteady aerodynamic theory such as Theodorsen and Loewy,

compressible theories such as Possio, Jones, and Rao, in comparison with conven-

tional quasi-steady theory. In some cases the influence of unsteady aerodynamics is

small; in other cases it may be significant.

Flap-Lag-Torsion Hover Experiments

A number of experiments on flap-lag-torsion stability of hingeless rotors in

the hub fixed condition have been conducted in order to validate analysis of canti-

lever rotor-blade stability. Sharpe (ref. 230) tested a 5.5-ft-diam two-bladed

model rotor intended specifically to validate the theoretical analyses of

references 16 and 17. The cantilever blades were designed to be uniform in mass and

stiffness and with no chordwise offsets of aerodynamic or mass centers. Blade-root-

to-hub attachments were designed to provide variations in precone, droop, and pitch

restraint stiffness. An illustration of the model is given in figure 60. Typical

lead-lag damping measurements are shown together with theoretical predictions in

figure 61. The comparisons with theory reveal that the analysis is quite accurate

at low pitch angles, whereas there are significant differences at higher blade pitch

angles. These differences are attributed in part to airfoil stall effects magnified

by the low test Reynolds number. Figure 62 demonstrates that the variations of
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damping with precone and droop are accurately predicted for eo = 2° where airfoil

stall effects are not present.

Another experimental investigation of flap-lag-torsion stability was conducted

in the NASA Ames 40- by 80-Foot Wind Tunnel with a full-scale, four-bladed BO-I05

soft-inplane hingeless rotor. Because of the size of the rotor test apparatus, the

rotor-blade stability results were considered representative of a fixed hub condi-

tion. Warmbrodt and Peterson compared measured regressing lead-lag damping against

the CAMRAD theory for varying numbers of elastic blade modes with and without

dynamic inflow (refs. 59,231-233). The results shown in figure 63 illustrate that

correlation is improved with the addition of additional modes and dynamic inflow.

Forward Flight Flap-Lag-Torsion Analysis

In the late 1960's, before development of strong interest in aeroelastic sta-

bility characteristics of hingeless rotor blades, an investigation of articulated-

rotor instability at high speeds was sponsored by the Aviation Applied Technology

Directorate. This study involved prediction and correlation with experimental data

of articulated-rotor bending-torsion flutter (ref. 234); stall flutter (ref. 235);

torsional divergence (ref. 236); and flapping and flap-lag stability (ref. 237).

The predictions were obtained from stability analyses based on the equations derived

by Arcidiacono in reference 2 which were also included as a part of the AATD-

sponsored investigation. The bending-torsion flutter analysis used a classic fixed-

wing approach; for the rotor in forward flight, a fixed azimuth approximation was

used, holding aerodynamic properties constant corresponding to the particular

azimuth being analyzed. The torsional divergence analysis was based on a similar

assumption. Results emphasized the importance of airfoil aerodynamic center chord-

wise offset from the cross-section center of mass. Subsequent experimental investi-

gations of Niebanck and Bain confirmed that the fixed azimuth assumption is very

conservative (ref. 238). The flap-lag analysis of articulated-rotor blades, based

on forced and transient response calculations, did not produce any unstable behavior

in forward flight.

For the experimental investigation of reference 238, a 9-ft-diam, dynamically

scaled, articulated-rotor model with several unbalanced chordwise center of mass

positions was tested at speeds up to 300 knots and at advance ratios up to 1.O.

variety of unstable blade responses were encountered, including stall flutter,

advancing-blade flutter, retreating-blade divergence, and flapping instability.

experimental results were compared with the analyses described above.

A

The

With the availability of Floquet theory and the increasing experience obtained

from fully coupled flap-lag-torsion stability analysis in hover, government-

sponsored researchers began to turn attention to the forward flight analysis of

cantilever rotor blades. These studies were marked by progressive refinements in

the analyses as the equations were improved and restrictive assumptions removed.

Nevertheless it must be noted that this is a problem of considerable complexity. It

involves determining the nonlinear trim state of a system of many degrees of freedom

(if multiple modes for blade bending or torsion deflection are retained} in response
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to unsteady excitation, obtaining linearized system equations, and performing a

Floquet analysis. Some early results of Friedmann and Reyna-Allende (ref. 21) are

shown in figure 64 for flap, lead-lag, and torsion-mode damping versus advance

ratio. More refined results of Shamie and Friedmann (ref. 24) were based on equa-

tions derived from reference 22; the results are shown in figure 65. Differences in

the results shown in figures 64 and 65 were attributed to the differences in the

equations used in the two analyses. In general, the results of these two studies

showed similar trends. Further investigation using multiple modes for bending and

torsion deflections and improved solution procedures was carried out by Friedmann

and Kottapalli in (ref. 174). Typical results for soft- and stiff-inplane configu-

rations for both propulsive and moment trim conditions are shown in figure 66.

These results again confirmed the general findings that stiff-inplane configurations

are less stable than soft-inplane blades.

Reddy and Warmbrodt (ref. 168,218) also studied the flap-lag-torsion problem in

forward flight and identified the effects of dynamic inflow and elastic coupling for

soft- and stiff-inplane cantilever rotor blades as shown in figures 67(a) and

67(b). These results are in good agreement with those in figure 66, even though the

blade parameters are not identical. The results of this investigation are unique in

that they provide a clear and relatively complete picture of the aeroelastic

stability behavior of hingeless rotor blades in forward flight. Furthermore, these

results have been compared with work of earlier investigators, allowing some

Judgments to be made about the validity of the results when, as in the case of

flap-lag-torsion stability of hingeless rotor blades in forward flight, appropriate

experimental data are not available for correlation purposes.

COUPLED ROTOR-BODY STABILITY

An important class of rotorcraft stability problems arises from mechanical

coupling between the rotor-system degrees of freedom and motions of the fuselage.

This coupling gives rise to the classic ground resonance of articulated-rotor

systems studied extensively by Coleman and Feingold (ref. 79) and others beginning

in the early 1940's. With the emerging interest in hingeless rotors in the 1960's,

mechanical instability began to receive renewed attention for configurations having

lead-lag natural frequencies below rotor speed (soft-inplane). In the case of

hingeless rotors, the strong rotor-body coupling generated by the cantilever blades

significantly increased the complexity of the mechanical instability and created the

potential for air resonance, as well as ground resonance. The work of Cardinale and

his co-workers on the XH-51A Matched Stiffness Rotor helicopter (ref. 81), and of

Lytwyn and Miao on the BO-I05 (ref. 239) illustrate early efforts in aeromechanical

stability. For stiff-inplane configurations, mechanical instability is not of

practical concern; however the effects of rotor-body coupling may aggravate aero-

elastic instabilities arising from blade or control-system characteristics. During

the last 20 years, a significant amount of government-sponsored research on coupled

rotor-body stability has been carried out, including analytical investigations and

large- and small-scale experiments. This section will address coupled rotor-body
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stability problems of conventional articulated and hingeless rotor helicopters.

Rotor-body stability bearingless rotor and tilt rotor systems is discussed later in

separate sections.

Analytical Investigations in Hover and Forward Flight

Under AFDD sponsorship, Hohenemser and Yin investigated the stability and

response of coupled rotor-body systems with feedback controls in order to understand

fundamental rotor-stability characteristics and identify means to reduce gust

response in high-speed forward flight. Hohenemser and Yin studied the whirl

dynamics of a flapping rotor coupled to a body with pitch and roll angular freedom

and found that whirl instability could occur for some configurations at high advance

ratio (ref. 196). In reference 240 they studied feedback control systems designed

to improve response characteristics and gust response of hingeless rotors operating

at high advance ratios without inducing aeroelastic instablities. Further studies

of this type were conducted in references 241 and 242. Finally, Hohenemser and Yin

investigated the stability of a flapping rotor on flexible supports using a finite-

element formulation (ref. 61). Results showed how higher flap-bending modes could

couple with support dynamics and influence stability of the coupled rotor-body

system.

One important problem in the area of classic mechanical instability is the case

of a rotor with one lag-damper inoperative. This asymmetric rotor problem gives

rise to periodic coefficients in the equations of motion, even in the hover condi-

tion. Hammond treated this problem using both Floquet theory eigenanalysis and

direct numerical integration (ref. 82). Typical results are shown in figure 68;

they illustrate how the modal dynamic behavior increases in complexity and how the

system can be destabilized as a result of losing one damper.

As noted above, hingeless rotorcraft mechanical instability is more complex

than classical ground resonance. Early analyses of hingeless-rotor air and ground

resonance were carried out in support of full-scale rotorcraft development programs;

for example, the BO-I05, XH-51, WG-13, and YUH-61A. However, there did not exist a

clear understanding of the role of hingeless-rotor configuration parameters in

determining aeromechanical stability. Aerodynamic damping acting through the hinge-

less-rotor flapwise hub moments was thought to counter air and ground resonance.

The unsteady wake effects were not understood. Very little work had been done to

study blade aeroelastic couplings; consequently, designers had little information to

help make important design decisions.

In order to address these issues, government-sponsored analytical and experi-

mental research was undertaken by the Army and NASA to develop a better understand-

ing of this topic and thus help to design rotorcraft free of such instabilities.

Ormiston carried out an extensive parametric investigation of hingeless-rotorcraft

air and ground resonance using a simplified model consisting of a rigid-body fuse-

lage and rigid-spring-restrained blades with flap-lag degrees of freedom (refs. 86,

87,243}. Initial results were presented in reference 243. Typical results are

shown in figures 69 and 70 (from ref. 86); they show the effects of rotor
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aerodynamics and collective pitch on ground- and air-resonance stability boundaries

for a wide range of configurations. The results indicate that hingeless-rotor

aerodynamic damping is stabilizing for air resonance but that as flap stiffness

increases, stability decreases (contrary to what might be expected).

The effectiveness of aeroelastic couplings to alleviate air-resonance instabil-

ity was also investigated, as shown in figure 71. Although blade aeroelastic coupl-

ing can be very effective in many cases, it is difficult to alleviate mechanical

instability over a wide range of operating conditions for a fixed set of configura-

tion parameters. The results of this study revealed that aeromechanical instability

of soft-inplane hingeless-rotor helicopters is indeed a very complex subject, even

for the simplified physical model employed in the analysis. In another study,

Ormiston explored in depth the detailed properties of the coupled rotor-body dynamic

modes and how they influenced air resonance behavior (ref. 87).

Other investigators have studied the effects of dynamic inflow on hingeless-

rotor air resonance. Since the aerodynamic damping resulting from cantilever blade-

flap stiffness exerts a powerful influence on hingeless rotor dynamics, it would be

expected that dynamic inflow might have a potentially significant effect on air

resonance stability. Gaonkar et al. (ref. 159) extended the aeromechanical stabil-

ity investigation of Ormiston to include dynamic inflow; a typical result is shown

in figure 72. In this example air resonance was stabilized; in other results the

opposite was shown to occur. Nagabhushanam and Gaonkar extended the rotor-body

hover analysis to forward flight and studied the effects on stability of dynamic

inflow models and trim methods, for soft- and stiff-inplane configurations

(ref. 163). A typical result in figure 73 shows how strongly the trim condition

influences coupled rotor-body stability in forward flight. In reference 244,

Johnson also analyzed the aeromechanical stability of a soft-inplane helicopter in

forward flight, using the equations developed in reference 85. Another approach

receiving renewed attention is the use of feedback control to stabilize air reso-

nance instability. Straub and Warmbrodt showed promising results using a relatively

basic approach, with cyclic lag and body angular rate feedback to control cyclic

pitch (ref. 245).

Venkatesan and Friedmann also studied coupled rotor-body stability of a multi-

rotor hybrid airship (ref. 98,246).

Rotor-Body Experiments in Hover and Forward Flight

One of the first experimental investigations of rotor-body aeromechanical

stability was conducted by Burkham and Miao at Boeing Vertol, using a 1/14th-scale,

Froude-scaled model of the BO-I05 helicopter (ref. 247). An important series of

experiments was conducted at the Aeroflightdynamics Directorate by Bousman

(refs. 158,248,249) to confirm analytical results obtained in reference 86 for

hingeless-rotor aeromechanical stability. The resulting data, obtained for the

hover condition using a 5.5-ft-diam model, are noteworthy for both quantity and

quality and have been used in numerous aeroelastic correlations. Several rotor and

body configurations were tested over a range of rotor speed and collective pitch for
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different fuselage restraints and blade aeroelastic couplings. Frequency and damp-

ing were obtained for all measurable fuselage and blade modes. As in previous AFDD

experiments, rigid-hinged blades with flap and lead-lag flexures were used. In

addition a simulated in-vacuum condition was tested, using non-airfoil shaped stub

blades.

Figure 74 shows the in-vacuum rotor configuration mounted on a motor-

transmission gimbal frame structure that represented a fuselage with pitch and roll

degrees of freedom. Frequency and damping results versus rotor speed for this model

are shown in figure 75 (from ref. 249). Comparison with Hodges' FLAIR analysis

(ref. 57) shows excellent correlation for the frequencies of four rotor and body

modes and excellent correlation for lead-lag damping of the regressing lead-lag

mode. This would be expected for a clean mechanical model without aerodynamic

effects. These results confirmed that the physical model, configuration definition,

test, and data analysis procedures were sufficiently refined to produce very high

quality data.

The airfoil-blade rotor configuration, mounted on an improved fuselage frame

having flex pivots in place of ball-type gimbal bearings, is shown in figure 76. In

figure 77, a sampling of regressing lead-lag mode damping results from reference 158

exhibits very low data scatter and agrees well with predictions of the FLAIR

theory. These results clearly confirmed trends predicted by earlier analyses for

the basic effects of rotor speed that reduce damping at body pitch and roll fre-

quency coalescences, the destabilizing effect of collective pitch, and the influence

of aeroelastic couplings where damping is dependent on configuration. Systematic

discrepancies between theory and measured results for some configurations indicate

that not all phenomena are accurately accounted for; likely candidates were postu-

lated to be unsteady aerodynamics, and possibly, blade flexibility.

Bousman's experimental results also led to new insights about the role of

unsteady aerodynamics in low-frequency coupled rotor-body dynamics. The effects of

dynamic inflow on coupled rotor-body modal frequencies were discussed above in

section 2. The measured damping data also provided confirmation of suspected

sources of discrepancies in body-pitch and roll-mode damping, as shown in figure 78

by calculations by Johnson with and without dynamic inflow (refs. 160,161). The

effects of dynamic inflow on lead-lag regressing mode damping are shown in fig-

ure 79, where dynamic inflow marginally improves the agreement between analysis and

data. Interestingly, Johnson's predicted lead-lag regressing-mode damping with

dynamic inflow does not agree with the data as well as Bousman's prediction without

dynamic inflow in reference 158, using Hodges's FLAIR analysis. This indicates that

the prediction of aeromechanical stability may be rather sensitive to small details

of the analysis. Friedmann and Venkatesan also correlated analyses with Bousman's

data (refs. 250,251). They also confirmed the favorable effects of dynamic inflow

on the correlation, and furthermore, in reference 250, their predictions of regres-

sing lead-lag damping correlated well with data at high rotor-blade collective pitch

angles where correlation was rather poor for the FLAIR analyses.

Other coupled rotor-body experiments have been carried out; Yeager et al.

tested a hingeless-rotor research model in the Langley Transonics Dynamics Tunnel
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for hover and forward flight conditions (refs. 252,253). Good correlation was

achieved with predictions by the CAMRAD analysis.

BEARINGLESS-ROTOR STABILITY

The bearingless-rotor configuration, a refinement of the basic hingeless rotor,

has been the subject of much development activity by the helicopter technical com-

munity and the focus of a significant amount of government research. The isolated

bearingless-rotor blade encompasses all of the basic flap-lag-torsion aeroelastic

stability characteristics of hingeless blades described above, as well as additional

complications of the flexbeam and pitch control mechanisms. Because of the wide

variations in different bearingless rotor configurations and the more pronounced

effects of higher blade-bending modes, bearingless-rotor stability characteristics

can be more difficult to understand or to generalize than those for hingeless rotor

blades.

Since most of the applications have been soft-inplane configurations, many

bearingless-rotor investigations have also treated air and ground resonance and thus

included coupled rotor-body dynamics. It is, therefore, appropriate to survey both

isolated rotor blade as well as coupled rotor-body studies, as a single topic in

this section.

Bearingless-Rotor Stability Analysis

Bielawa carried out one of the first analytical investigations of bearingless-

rotor aeroelastic stability using the G400 analysis described above to evaluate the

stability of candidate full-scale bearingless rotors for application to the RSRA

aircraft. Hover stability results were presented in reference 56 for soft- and

stiff-inplane isolated (fixed hub) rotor-blade configurations having snubbed torque
tubes. Instabilities were evident at high collective pitch angles, and these were

aggravated by airfoil stall effects. The first three flap-bending modes, the first

two edgewise-bending modes, and the torsion mode were highly coupled and led to very

complex behavior.

Development of FLAIR by Hodges (described earlier in section under Helicopter

Equation) was initiated to support the full-scale Bearingless Main Rotor (BMR)

developed and flight tested on a B0-I05 helicopter by Boeing Vertol under Army AATD

sponsorship. The BMR development program is described in more detail in a later

section. The simplified FLAIR analysis considered the blades to be rigid in bending

and torsion, attached to a uniform stiffness flexbeam modeled by exact nonlinear

bending-torsion equations for a continuous flexible beam. The rotor was attached to

a rigid-body fuselage having pitch and roll degrees of freedom. Quasi-steady aero-

dynamic theory was used for the hover condition only. The FLAIR analysis was used

by Hodges in reference 186 to identify the configuration parameters that would

maximize the air and ground resonance stability of the BMR configuration
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(ref. 58). The Boeing Vertol BMR configuration corresponds to Case II in fig-

ure 10. Parameters such as flexbeam and blade precone, droop, sweep, and flexbeam

pre-pitch were studied. Air resonance was easily stabilized over a reasonable rotor

speed range; however, ground resonance was more difficult. The FLAIR analysis was

also checked by Hodges (ref. 88) against model-scale BMR experimental measurements

of air and ground resonance stability reported in reference 254. Typical results

are shown in figure 80 for two different BMR configurations; there is generally good

agreement between FLAIR and the measured data.

Sivaneri and Chopra developed a finite-element, bearingless-rotor blade analy-

sis capable of modeling a twin flexbeam configuration (refs. 59,67). They compared

the accuracy of a simplified approach using a single flexbeam to represent a dual

flexbeam configuration, an approach that they found to be inaccurate in some cases.

Bearingless-Rotor Experimental Investigations

Considerable experience in testing bearingless rotors has been gained through

government research and development activities, including development of prototype

systems. Only a part of this has been focused to meet specific research objectives;

therefore, there is a need for continuous experimental investigations in this area.

A moderate amount of experimental testing data has been accumulated through

development testing of prototype rotorcraft systems. These developments are dis-

cussed in section 4. The Boeing Vertol Bearingless Main Rotor (BMR) program was

particularly noteworthy for the amount of test data obtained (refs. 89,90). Exten-

sive test data for the I/5.86-Froude-scaled BMR model was reported by Chen et al.

(ref. 254). An interesting correlation of model data, full-scale flight-test data,

the FLAIR analysis, and the Boeing Vertol C-45 rigid-blade analysis for a hover air

resonance condition of the BO-IO5/BMR is shown in figure 81. Following the BMR

flight-test program, extensive experimental testing of the full-scale BMR rotor was

conducted in the 40- by 80-Foot Wind Tunnel as described in section 4. Typical

experimental results from reference 255 are shown in figure 82 together with predic-

tions from a Boeing Vertol code. The rotor apparatus used for the wind-tunnel

testing provided a nearly hub-fixed condition for the rotor, therefore, the results

represent isolated rotor-blade stability.

A series of experimental investigations using a small-scale bearingless-rotor

model was carried out at AFDD by Dawson with the specific intent of verifying the

FLAIR analysis and of investigating bearingless-rotor stability characteristics in

general (ref. 256). This model was designed to accommodate variations of a wide

variety of flexbeam and control-system geometric parameters to permit testing a wide

variety of bearingless-rotor types. These features are illustrated in the exploded

view of the hub, flexbeam, pitch control torque tube, and pitch links (fig. 83).

The model was tested in both two- and three-bladed versions. Typical results from

reference 256 for lead-lag damping versus blade-pitch angle are shown in figure 84

at two different rotor speeds and for two different pitch-control configurations.

The correlation with the FLAIR analysis is reasonably good; however, instances of

flutter involving unsteady aerodynamics not treated by FLAIR were also
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encountered. Further experimental investigation by Bousman and Dawson of the

flutter results identified several distinct types of flutter that may be experienced

by bearingless rotors (ref. 257).

Finally, a considerable amount of small-scale experimental data has been

obtained by Weller and Peterson for the air resonance characteristics of an advanced

bearingless rotor in hover and forward flight (refs. 258-260). These results are

more fully described in section 4. In addition, small-scale experimental studies in

connection with the ITR/FRR Project were conducted in hover and forward flight, as

noted in section 4. The Boeing Vertol ITR bearingless-rotor model testing was

reported by Mychalowycz (ref. 261).

TILT-ROTOR AIRCRAFT STABILITY

In the early 1960's, considerable attention was given to the problem of rotor-

pylon stability of tilt-rotor aircraft. Before the emergence of the tilt-rotor,

research had been performed in efforts to understand the problem of classical pro-

peller whirl-flutter instability where nacelle pitch and yaw motions are coupled

through gyroscopic effects of a spinning rigid propeller. Reed and Bland (ref. 262)

and Houbolt and Reed (ref. 263) investigated both classical propeller whirl flutter

and static divergence, using rigid-rotor models. A comprehenseive review of propel-

ler whirl flutter by Reed can be found in reference 264.

Actual tilting proprotor stability analyses were subsequently found to be

considerably more complicated than classical propeller whirl flutter. The impor-

tance of rotor flapping for tilting proprotor configurations was first investigated

by Young and Lytwyn (ref. 265). Using a representation including yaw and pitch

motion of a rigid nacelle and with rigid flapping for each blade, it was shown that

a forward whirl instability was possible but would be self-limiting because of

nonlinear aerodynamics. Most importantly, it was found that increased blade flexi-

bility reduced the pitch and yaw stiffness requirements for proprotor whirl flutter,

thereby allowing weight reductions for the pylon mounting in tilt-rotor aircraft.

During development and testing of the Army Bell XV-3 tilt-rotor aircraft,

further investigations of proprotor whirl flutter were carried out by Hall

(ref. 266) and Edenborough (ref. 267); they provided additional understanding of

rotor-pylon dynamics. Two potentially unstable modes were identified for an

XV-3-type tilt-rotor aircraft: a pylon mode at a frequency near the natural fre-

quency of the pylon, with little rotor flapping, requiring little damping for sta-

bilization; and a rotor mode at much lower frequency, with large rotor flapping,

requiring substantial damping for stabilization.

Coupled Rotor, Pylon, and Rigid-Body Dynamics

In the early 1970's, following initiation of the XV-15 program, the government

increased efforts to improve analysis capabilities and understanding of tilt-
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proprotor aircraft stability. Up to this time, no dynamic analysis of a full rotor-

pylon-wing-airframe system had not been undertaken. Kvaternik developed the analy-

sis of reference 99 to better understand wing-rotor dynamics using a linear analysis

of an idealized proprotor in cruise-mode flight with rigid, spring-restrained flap-

ping blades. This analysis was used to predict the aeroelastic stability of a

small-scale model of the Bell Model 266 tested in the Langley Transonic Dynamics

Tunnel. Figure 85 shows a comparison of experimental and analytical results for two

configurations of the model, with and without aerodynamics. The analysis of refer-

ence 99, together with an extensive small-scale-model test program conducted in the

Langley Transonic Dynamics Tunnel with Grumman (ref. I00), was used by Kvaternik and

Kohn to investigate the applicability of a simple mathematical model to predict

whirl flutter for both backward and forward whirl modes. The model is shown in

figure 86. The study showed the ability to predict dynamic stability from such a

simple mathematical model using linear aerodynamics for both types of rotor-pylon

instabilities. Additional descriptions of these investigations are reported in

references 268 and 269.

In support of the development testing of the XV-15 tilt-rotor aircraft, Johnson

used a sophisticated analysis for predicting tilt-rotor aeroelastic stability behav-

ior. The initial analysis (ref. 101) treated rotor-blade flap and lag elastic

bending and wing beam bending, chord bending, and torsion, and was used to study the

sensitivity of analytical predictions to various elements of the theoretical

model. This analysis was also used for comparisons with results of two full-scale

semispan prop-rotor-wing models tested in the NASA Ames 40- by 80-Foot Wind Tun-

nel. The Boeing Vertol soft-inplane proprotor configuration tested in the wind

tunnel is shown in figure 87; measured results for damping of the wing vertical

bending mode for a Boeing Vertol soft-inplane configuration are compared with analy-

tical predictions in figure 88. Johnson also discussed these results in

reference 270.

Johnson further investigated the sensitivity of tilt-proprotor stability to

details of the analytical model (ref. 271). That investigation used an extended

version of the equations of reference 101, including coupling of rotor-blade flap-

lag bending deflections, blade torsion, additional blade-bending modes, rotor rota-

tional speed perturbations, and wing aerodynamic forces. Typical results (fig. 89)

indicate the importance of blade-pitch and blade-lag motion on wing bending-mode

damping. In reference 103 Johnson investigated the influence of the rotor shaft

(rotational) degree of freedom. When rotor shaft angular rotation is unlocked from

the wing tip rotation (which accompanies wing tip vertical deflections), rotor

aerodynamic damping no longer damps wing vertical bending motion, resulting in a

pronounced destabilizing effect. He also showed that interconnect shaft dynamics

were important in coupled rotor-wing antisymmetric modes, as shown by the typical

results in figure 90. Johnson also investigated the importance of pitch-lag coupl-

ing on proprotor stability (ref. 272). Proprotors have built-in blade precone for

relieving high steady blade-flap bending moments in hover. However, in the cruise

mode, with reduced rpm and significantly reduced thrust, the elastic bending

decreases the blade coning. The resulting negative pitch-lag coupling then becomes

destabilizing. This coupling can be reduced using increased control-system
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stiffness or by introducing blade droop. This work also investigated the effects of

lift divergence at high speed where compressibility effects reduce aeroelastic

stability, as shown in figure 91.

In preliminary studies for the XV-15 aircraft, a soft-inplane proprotor was

investigated analytically and experimentally by Alexander et al. (ref. 273). Unlike

a stiff-inplane rotor system, a soft-inplane system can experience air resonance at

low speed when the regressing lead-lag motion coalesces with the wing vertical

bending mode. Once again, the rotor rotation degree of freedom is very important;

otherwise the wing mode is incorrectly predicted to be highly damped. The results

of this study showed excellent damping predictions compared with full-scale

40- by 80-Foot Wind Tunnel data for the full-scale semispan Boeing Vertol rotor-

nacelle-wing model.

Subsequent to the XV-15 wind-tunnel and flight-test program, Johnson (ref. I04}

assessed the capability to predict performance, loads, and stability of the XV-15

aircraft, using the CAMRAD comprehensive analysis of reference 94. The conclusions

from that study for tilting proprotor dynamics recognize the established confidence

in predicting whirl flutter for the configurations that have been built and

tested. However, new configurations with expanded flight capabilities will require

new treatment and analyses to overcome current shortcomings.

A good indication of the capabilities for predicting proprotor whirl stability

is provided in figure 92, which shows test results obtained for a V-22 Osprey model

tested in the NASA Langley Transonic Dynamics Tunnel (refs. 274-276). Measured

damping data for several test configurations are compared with predictions by CAM-

RAD, PASTA, and a Bell analysis DYN4. Although some preliminary adjustment in the

input parameters of the analyses is usually necessary, the agreement between test

and analysis is reasonably good.

Methodology Assessment

It is a given that theoretical prediction methods for rotorcraft aeroelastic

stability require validation of some sort to be accepted as trustworthy. There are

many ways of doing this. Three typical approaches are to check the predictions with

(I) a known closed-form analytical solution to a theoretical problem, (2) results

from other validated programs, and (3) experimental data.

A useful way to validate individual computer programs and at the same time

assess the analytical state of the art in a given technical field is to analyze the

same problem with several programs and compare the results. This has value for

hypothetical problems (comparing only computer results), but it is obviously more

desirable to analyze a problem for which experimental data are also available. Such

an exercise is particularly useful in the rotorcraft dynamics technical community,

especially given the many independent computer programs used within the industry.

Validation for these codes is often minimal or limited to a narrow range of vehicle

or rotor configurations. Taken collectively, the comparisons serve to calibrate the

prediction methods for specific applications and identify areas where additional
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research effort might have a high payoff. The results often provide the clues or

information useful in upgrading individual codes.

A methodology assessment of this type was conducted by the Aeroflightdynamics

Directorate in connection with the ITR/FRR Project in June 1983 (ref. 277). Aero-

elastic stability predictions were compared with a variety of carefully selected

experimental data encompassing simple and complex rotor blades; isolated rotor and

coupled rotor-body configurations; and small- and large-scale rotors operating in

hover, wind-tunnel, and flight-test conditions. A total of eight different predic-

tion codes from industry, universities, and government laboratories were included in

the comparisons. The results were very useful, and a few are included herein to

illustrate some of what was learned.

The first case is for the elastic hingeless-rotor-blade model discussed in

section 3. Data for lead-lag damping in the hover condition (ref. 230) are used to

compare with predictions for two cases, one without built-in blade droop and the

other with -5 ° droop. Predicted results without droop (fig. 93(a)) are relatively

good for most of the analyses except at higher pitch angles where airfoil stall

occurs. The situation changes completely for the droop configuration, shown in

figure 93(b). Now the correlation is poor and there is a wide spread among the

predictions. The only difference in the two cases was a "small change" in rotor

geometry. Since the bending-torsion behavior of cantilever elastic blades is very

sensitive to the precone and droop, it may be concluded that the basic structural

dynamics was not adequately modeled. One benefit of such comparisons is the insight

and stimulus to correct such discrepancies by identifying the sources of error in

the program. Although such a problem had not been previously suspected, the G400

analysis was revised to correct the undiscovered problems in the analytical treat-

ment of the blade structural deformations. The revised G400 results included in

figure 93 were a substantial improvement over the original calculations.

Another example is regressing lead-lag mode damping of the coupled rotor-body

dynamic system of Bousman described previously. Figure 94 shows experimental data

at e = 9° (ref. 158) compared with the predicted results of various analyses.

Again, there is a considerable scatter in the predictions, even though the general

trends are reasonably well represented. Given that only quasi-steady aerodynamic

theory and hinged-rigid blade dynamics are included, it would be expected that the

predictions would be in much closer agreement.

In order to determine the sources of differences between the various predic-

tions it is necessary to compare the equations directly at some level or to compare

predictions for a simplified problem in stages until the differences are accounted

for.

4. EFFECT OF AEROELASTIC STABILITY CHARACTERISTICS ON ROTORCRAFT SYSTEMS

Previous sections have addressed the development of analysis methods for aero-

elastic stability and investigations of the different types of aeroelastic stability
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phenomena exhibited by rotor blades and coupled rotor-body systems. This section

will describe the effect of aeroelastic stability considerations on the design of

specific rotorcraft systems. Insights provided by development and testing experi-

ence will also be addressed. The purpose is to identify the government research

that contributed to the development of these systems, such as helping to insure

freedom from instability, resolving unexpected occurrences of aeroelastic instabil-

ity, or supporting research on a particular class of rotor systems to overcome

inherent aeroelastic stability limitations.

HINGELESS ROTORS

During the 1960's considerable interest arose in the hingeless rotor as a

natural step in the evolution of a simpler, lighter, and more reliable helicopter

rotor. Much of the early interest was sparked by the Lockheed CL-475 and XH-51A

gyro-controlled, rigid-rotor vehicles, the MBB B0-I05, and the Westland WG-13

Lynx. Hingeless rotors offer a number of advantages such as elimination of heavy,

bulky, and unreliable hinges and bearings of articulated rotors and the potential to

eliminate lead-lag dampers used to prevent ground resonance. The many possible

configurations and associated design variables complicate the subject of hingeless-

rotor aeroelastic stability, and the potential for instability makes it central to

the design of a successful system.

AH-56A Cheyenne

The U.S. Army Lockheed AH-56A Cheyenne was a high-speed compound helicopter

designed as an advanced aerial fire support system. The gyro-controlled stiff-

inplane hingeless rotor was derived from the highly successful Lockheed XH-51

demonstrator aircraft that was flown as both a pure and compound helicopter. The

hingeless rotor, combined with a mechanical gyro feedback control system, provided

high maneuverability and low gust response. The stiff-inplane rotor precluded the

need for lag dampers to suppress ground or air resonance instability. However,

during flight testing the AH-56A revealed several aeroelastic instabilities not

encountered with the XH-51, a result of differences in design details of the

scaled-up AH-56A configuration. Furthermore, the hingeless rotor was a significant

departure from conventional articulated rotor configurations, and the complex behav-

ior of stiff-inplane hingeless rotors was not adequately understood at the time. As

a result, this experience stimulated a wide range of basic research into the aero-

elastic stability of hingeless-rotor systems and indeed much of AFDD research grew

out of AH-56A development experiences. Following the conclusion of the AH-56A

program, the U.S. Army Aviation Systems Con_nand and the Aeroflightdynamics Director-

ate sponsored a Lockheed effort to document the experience obtained regarding

dynamics phenomena of this aircraft. This information is contained in reports by

Donham and Cardinale (ref. 278) and Johnston and Connor (ref. 279). Additional

sources for this and other information are Johnston and Cook (ref. 280), Anderson

(ref. 281), and Anderson and Johnston (ref. 282).
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During early development of the AH-56A, two problems received most attention.

The IP-2P phenomenon (ref. 278) occurred at low rotor speed in the presence of high

rotor hub moments as might occur in ground contact, where nonlinear blade-feathering

moments resulting from combined flap and lead-lag bending were fed back into the

control gyro in such a way as to produce a coupled rotor-gyro instability. The

second problem, termed I/2 P-Hop (refs. 279,282), involved coupling of the lead-lag

regressing mode, vehicle roll mode, collective rotor flapping, and vehicle vertical

translation near the regressing inplane frequency of about 0.5 per rev. This pheno-

menon occurred in high-speed flight and led to loss of an aircraft.

Because of the high advance ratio and proximity to a half-integer frequency,

the I/2 P-Hop stimulated interest in the use of Floquet theory to treat periodic-

coefficient systems. To further study the problem, the AH-56A was installed in the

40- by 80-Foot Wind Tunnel at Ames for further testing under controlled conditions

(fig. 95). Early in the test, while at a moderate-speed, high-thrust condition a

rotor pitch-up divergence occurred that destroyed the test vehicle. This instabil-

ity was attributed to aerodynamic stall-feathering moments overpowering and desta-

bilizing the normal gyro feedback generated by rotor flapping. Following this

incident, the Advanced Mechanical Control System (AMCS) was developed, using direct

flap feedback from the blades instead of indirect feathering moments. This elimi-

nated the source of both the IP-2P and moment stall instabilities. A final problem

of the reactionless mode instability was encountered during a low-speed, high-gross-

weight condition (refs. 279,281). This was essentially an isolated-blade flap-lag-

torsion instability of the type discusssed previously.

During the AH-56A Cheyenne development, government researchers worked closely

with Lockheed engineers to attempt to understand the new phenomena being encountered

and to devise means to eliminate the problems. This program was instrumental in

revealing the complexity of stiff-inplane hingeless-rotor aeroelastic stability and

the necessity of a firm technology base on which to launch a major development

program. Government research subsequently confirmed the complexity of hingeless-

rotor aeroelastic stability characteristics and provided key information to guide

further rotor system developments.

Bell Flexhinge Rotor

The two-bladed teetering rotor has long been synonymous with Bell Helicopter

Textron but in recent years the company has developed several production hingeless-

rotor helicopters and has flight tested a prototype bearingless rotor. These accom-

plishments were preceded by an active research and development effort, much of it in

cooperation with or sponsored by the government. While much of this research

addressed flying qualities, rotor loads, and vibration characteristics, aeroelastic

stability played a prominent role in the later stages of development. Early Bell

hingeless rotors from the first Model 47 flown in 1957 to the Model 609 flexbeam

rotor tested on the UH-I under Army sponsorship in 1972 (ref. 283) were stiff-

inplane configurations. The chief drawbacks of these rotors were excessive chord-

wise blade stresses in high-speed and maneuvering flight.
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To resolve these problems, Bell evolved a soft-inplane version of the Model 609

rotor, using elastomeric lag hinges and dampers, and demonstrated greatly reduced

chordwise bending moments in flight tests. The dampers insured air and ground

resonance stability. Bell initiated further investigations of the aeromechanical

stability of soft-inplane rotors using a small-scale research and development rotor,

the Model 652, having capabilities to vary the aeroelastic coupling parameters. In

cooperation with the U.S. Army Aerostructures Directorate and NASA Langley, the

Model 652 rotor was extensively tested for aeromechanical stability in the Transonic

Dynamics Tunnel, as reported by White and Weller (ref. 284). They investigated

effects of elastomeric damping, kinematic pitch-lag coupling, pitch-flap coupling,

flap-lag coupling, and hub stiffness. They also analytically investigated ground

resonance using combinations of rotor blade pitch-lag and flap-lag coupling that

Ormiston found effective for increasing lead-lag damping of a fixed-hub rotor

(ref. 202). However, for coupled rotor-body configurations including pylon flexi-

bility, they were unable to stabilize both the pylon and ground-resonance mode with

a single combination of couplings.

Bell completed development of a refined version of a soft-inplane hingeless

rotor, the Model 654, using elastomeric dampers to insure ground and air resonance

stability, and conducted successful flight testing of a Model 206L aircraft

(ref. 285). Bell used a similar approach to insure stability of the Flexhinge

Rotor, subject of a predesign study for candidate rotor systems for the Rotor

Systems Research Aircraft (ref. 286).

BEARINGLESS ROTORS

The hingeless-rotor concept is based on simplifying the rotor hub by eliminat-

ing blade flap and lead-lag hinges and carefully designing the structure to permit

necessary blade-motion response without incurring excessive bending stresses. The

bearingless rotor simply extends this idea and eli_inates the blade-pitch-change

bearing as well, substituting a flexbeam of sufficient torsional flexibility to

accommodate the required pitch-change motion of the blade. Elimination of the

rotor-hub bearings significantly reduces weight, complexity, and maintenance,

thereby increasing helicopter productivity and reliability. However, aeroelastic

complexity of the bearingless rotor introduces new unknowns in the development of

advanced rotorcraft.

XH-51A Matched-Stiffness Rotors

The XH-51A Matched Stiffness Rotor program was conducted by Lockheed California

Company under sponsorship of the Aviation Applied Technology Directorate to improve

the gyro-controlled rigid-rotor design proved by the basic XH-51A aircraft. The

basic gyro control system was designed to sense rotor-flapping motion caused by

external disturbances and to feed back appropriate cyclic pitch to counter the

flapping response. The mechanical system for sensing blade-flapping moments also
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sensed blade-pitch moments that could potentially contaminate the feedback signal.

Hence any reduction of blade-torsion moments was desirable. The nonlinear torsion

moments, which result from combined flap and lead-lag bending, vanish for rotor

blades with equal flap and lead-lag bending stiffnesses; therefore, the so-called

matched-stiffness blade promised to eliminate a principal source of gyro-control

contamination and permit a reduction in the size of the gyro. When the lead-lag

stiffness was reduced to match the flap stiffness, the rotor also became soft-

inplane, and therefore susceptible to ground and air resonance. The study of these

phenomena became the principal focus of the program.

While the design for a matched stiffness configuration was being formulated, it

was also decided to incorporate another feature: replacement of the feather bear-

ings with a flexbeam, thus converting the hingeless rotor to a bearingless rotor.

No auxiliary damping was used in the design of the rotor. As reported by Cardinale

(ref. 81) and Donham et al. (ref. 287) the XH-51A Matched Stiffness Rotor system did

not exhibit a sufficiently wide stable range of rotor speed to operate safely

throughout the flight envelope. Nevertheless, the ground and air resonance bound-

aries were extensively documented for ground-contact conditions and for hover and

low-speed flight, and a number of configuration changes were evaluated and corre-

lated with theoretical analyses. The program provided valuable experience that

aided later bearingless-rotor development programs such as that of the Boeing Vertol

Bearingless Main Rotor.

Composite Bearingless-Rotor Design Studies

Increasing interest in bearingless rotors, together with the development of the

Army-NASA Rotor Systems Research Aircraft (RSRA) for flight testing advanced rotor

systems, resulted in government sponsorship of several preliminary design studies of

candidate rotor systems. These studies emphasized the application of composite

materials to the bearingless-rotor concept and gave special consideration to the

requirements for adequate levels of aeroelastic stability. These studies were

discussed by Swindlehurst in reference 288.

One of the first studies of the bearingless rotor for eliminating all hinges

and bearings through the use of composite materials was initiated at UTRC in 1968.

In the Composite Bearingless Rotor (CBR) concept, two flexbeam members crossed at

the center of the rotor form the spars of a four-bladed rotor. The early UTRC work

led to Army and NASA support for analytical and design studies including composite

materials investigations, small-scale model testing, development and correlation of

stability analysis with test data, and preliminary design layouts of a full-scale

rotor. Results of this work were reported by Bielawa et al. (ref. 56). Both two-

and four-bladed stiff-inplane configurations with pinned-pinned torque tube and

cantilever torque tube pitch-control systems were wind-tunnel tested in the fixed

hub condition. The G400 program developed by Bielawa (ref. 55) was used for this

investigation. Principal aeroelastic test results and correlations with analysis

involved blade-bending moment response and stresses. The results also verified the

analysis, in that all experimental cases observed to be stable were also predicted
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to be stable. Experimental results did indicate a tendency for the cantilver torque

tube configuration to exhibit adverse pitch coupling resulting from torque-tube

flapwise motion under some operating conditions.

The full-scale Composite Bearingless Rotor design used a four-bladed 62-ft-diam

rotor sized for an S-61 class aircraft. Two torque tube configurations were

designed, a cantilever torque tube and a snubbed torque tube to eliminate the poten-

tial for adverse couplings owing to flapwise motion of the torque tube observed in

the model tests. An aeroelastic stability analysis of the full-scale snubbed torque

tube configuration was carried out using the G400 analysis for both stiff- and

soft-inplane versions of the design and showed both configurations to be stable for

the conditions analyzed.

Another government-funded design study was undertaken by Boeing Vertol to

evaluate the feasibility of a four-bladed Composite Structures Rotor (CSR) for

installation and testing on the NASA-Army RSRA (ref. 289). The CSR design was

roughly similar to the BMR configuration, having twin flexbeams, a torque shaft

between the flexbeams, and no auxiliary elastomeric damping. Design of 53-ft-diam

and 60-ft-diam rotors were studied and air and ground resonance analyses performed

using the equivalent-hinged, rigid-blade C-45 analysis. This exercise revealed the

difficulty of analyzing a complex elastic system, such as the bearingless rotor,

with a discrete, equivalent-hinged analysis.

Although the flexbeam designs for the 53-ft and 60-ft rotors were the same, the

different blade lengths led to different locations for the equivalent flap and

lead-lag hinge, such that the C-45 flap and lead-lag hinge sequences for the two

designs were different. For the 53-ft-diam rotor, the sequence was flap-lag-pitch;

for the 60-ft-diam rotor, the sequence was lag-flap-pitch. This difference was

sufficient to cause moderately large differences in the stability of the two

rotors. For the 60-ft rotor, it was necessary to reduce the chordwise frequency to

insure aeromechanical stability.

Boeing Vertol Bearingless Main Rotor

The Applied Technology Directorate sponsored a very successful Boeing Vertol

program to develop and flight test the Bearingless Main Rotor (BMR) on the BO-IO5

aircraft; the purpose was to demonstrate concept feasibility with emphasis on aero-

elastic stability. The principal objectives of the project were to demonstrate that

acceptable aeroelastic stability, structural loads, and flying qualities could be

achieved with such a rotor. The rotor design concept was an outgrowth of Boeing's

YUH-61A stiff-inplane bearingless tail rotor. The four-bladed BMR was designed to

replace the BO-I05 hingeless rotor; the existing hub and inboard portions of the

blade were removed and replaced with a bearingless hub, dual fiberglass flexbeams

and a torque tube cantilevered to the blade and pinned at the hub (fig. 96). The

basic dynamic properties of the B0-I05 rotor were retained, with moderate flapwise

stiffness, soft-inplane chordwise stiffness, and no auxiliary lead-lag dampers. The

results of the design effort were reported by Harris et al. (ref. 290).
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Marginal air and ground resonance characteristics of the XH-51A Matched Stiff-

ness Rotor and a desire to avoid the use of lag dampers served to focus considerable

attention on aeroelastic stability in the early phases of the BMR program. Exten-

sive small-scale-model testing was conducted to check theoretical stability predic-

tions. Test results (refs. 254,290) confirmed a reasonably wide rotor speed range

of stable operation, generally in agreement with the predicted characteristics. The

Boeing Vertol predictions were obtained from the C-45 analysis of a simplified

spring-restrained hinged-rigid blade. With careful exercise of engineering judgment

in the selection of effective hinge configuration parameters for the bearingless

rotor, reasonably accurate predictions of stability could be made. The need for a

more rigorous approach to better support the BMR design was recognized, however, and

led to the development of the FLAIR analysis by Hodges, as described in section 2.

In an effort to determine the most effective aeroelastic couplings to prevent air

and ground resonance instability, parametric studies were conducted using the C-45

and FLAIR analyses; FLAIR results are published in reference 58. Both analysis and

model test results indicated that a combination of flap-lag structural coupling from

blade negative-droop outboard of the flexbeam were most effective for aeroelastic

stability. Aeroelastic stability characteristics determined during flight testing

of the BMR on the B0-I05 aircraft were reported by Dixon (ref. 90), Staley and Reed

(ref. 291), and Staley et al. (ref. 89).

Extensive ground and air resonance tests were conducted in a variety of ground

contact and flight conditions. Initial ground testing revealed lower than expected

stability, and led to minor modifications of the skid landing gear to raise the body

frequency slightly. Air resonance damping was similar to theoretical and model test

data. The BMR was slightly less stable than the baseline BO-IO5 hingeless rotor,

and this was attributed in part to lower inherent structural damping of the BMR

flexbeam-blade structure. Nevertheless, the BMR demonstrated a major advance in

rotor-system technology and remains the only damperless, bearingless rotor success-

fully tested throughout the vehicle flight envelope.

Following flight testing, the BMR was installed in the 40- by 80-Foot Wind

Tunnel at Ames to gather additional data on rotor stability characteristics as well

as performance, loads, and flight-control characteristics outside the BO-I05 air-

craft flight envelope. The wind-tunnel testing also included modifications to vary

the pitch-link stiffness and addition of elastomeric damper strips to increase

flexbeam structural damping. The results of the wind-tunnel test, reported by

Sheffler et al. (ref. 292) and Warmbrodt and McCloud (ref. 293), indicated that the

relatively simple modification of adding elastomeric damping strips was very effec-

tive in increasing the lead-lag damping in all cases tested. Sheffler et al. sub-

sequently reported on model testing of an advanced BMR II flat-strap configuration

that was also stabilized with the use of elastomerio damping strips (ref. 294).

Bell Advanced Bearingless Rotor

Following the successful development of the Model 654 soft-inplane hingeless

rotor and application of that technology to several production aircraft, Bell
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initiated a program to design and test an advanced bearingless rotor. This effort

produced the very successful Model 680 rotor system, which was flown on a Model 222

aircraft. As a part of that program, Bell sought to improve in-house analysis capa-

bilities for predicting the aeroelastic stability of bearingless-rotor

configurations.

In support of this work, NASA Ames sponsored a model-scale experimental program

to obtain data for determining the adequacy of these prediction methods. The small-

scale model was similar to the Model 680 configuration--a four-bladed, soft-inplane

bearingless rotor with a single element flexbeam and a torque tube with a snubber

and elastomeric damper. Blade coning, sweep, pitch flap and pitch lag couplings,

and fuselage inertial properties could be changed to conduct parametric studies.

The model was tested in hover and forward flight for both fixed hub and coupled

rotor-body configurations. The testing and results were reported by Weller

(refs. 258,259) and by Weller and Peterson (ref. 260). In general the Bell analyti-

cal predictions were in good agreement with the measured test data. It was also

concluded that for this rotor configuration the effects of rotor geometric and

structural design parameters on stability were not large, and that an auxiliary

elastomeric damper was the best means of insuring acceptable mechanical stability.

Integrated Technology Rotor/Flight Research Rotor

The Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Project was

undertaken by the Aeroflightdynamics and Aviation Applied Technology Directorates of

the U.S. Army Aviation Research and Technology Activity, and NASA Ames, to advance

rotor-system technology by combining advances in the structures, dynamics, mate-

rials, aerodynamics, and acoustics technical disciplines to design and demonstrate,

through actual full-scale flight test, the benefits of an optimized rotor system.

Although the project was not funded as far as the full-scale flight test phase,

sufficient research and development was completed that it significantly influenced

related and follow-on programs. The project consisted of several phases and

efforts, undertaken primarily through industry contracts. A methodology assessment

exercise was conducted to evaluate the adequacy of industry aeroelastic stability

prediction capabilities, as described in section 3. Concept definition studies were

undertaken by five helicopter industry contractors to examine the feasibility of

various hub concepts for further consideration during preliminary design. Many of

these hub concepts were bearingless-rotor configurations, and design features to

generate aeroelastic couplings and to enhance aeroelastic stability were examined.

Bousman et al. presented an overview of these studies in reference 295. An example

of one damperless, bearingless-hub design examined by Bell Helicopter Textron is

illustrated in figure 97.

Three contracts were awarded to conduct preliminary design of ITR/FRR rotors.

A significant part of these studies included testing small-scale models to confirm

the aeroelastic stability of the candidate designs. The Boeing Vertol design

reported by Mychalowycz was a single-flexbeam bearingless rotor with a torque-tube

pitch control system having an offset shear pin at the hub to introduce pitch-lag
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aeroelastic coupling (ref. 261). Hooper used the FLAIR analysis to conduct param-

etric studies of the ITR hub coupling parameters to optimize the aeroelastic stabil-

ity characteristics (ref. 91). Negative droop and an offset of the torque-tube

shear pivot to introduce pitch-lag coupling were effective in inhibiting air and

ground resonance instability. No auxiliary elastomeric damping was included. Bell

Helicopter Textron designed a refinement of the Model 680 bearingless-rotor configu-

ration and included a torque tube with snubber and elastomeric damper. The Sikorsky

design was based on the elastic gimbal rotor design originally studied by Carlson

and Miao (ref. 296).

The results of the ITR/FRR Project served to identify the technical readiness

of several advanced rotor technologies. Regarding aeroelastic stability of bearing-

less rotors, a consensus on the feasibility of a damperless configuration was not

reached. The definition of blade and flexbeam frequencies, and the identification

of aeroelastic couplings to insure aeromechanical stability over a sufficient range

of rotor speed and vehicle operating conditions, is a difficult design task; at the

present time, most designers will opt for a lower-risk approach that incorporates

auxiliary elastomeric lead-lag damping.

Related structural issues of flexbeam strength and flexibility are better

understood, but more progress is needed. It is worth noting that the government-

sponsored preliminary design studies prompted a parallel MDHC-funded program that

culminated in successful flight testing of the HARP bearingless rotor on the Model

500 helicopter. In addition NASA will sponsor fabrication and testing of a large-

scale version of the Boeing Vertol ITR in the NASA Ames 40- by 80-Foot Wind Tunnel.

TILT-ROTOR AIRCRAFT

The U.S. Army Bell XV-3 Convertiplane was designed in the early 1960's. It

used a two-bladed, teetering-rotor system to partially decouple the gyroscopic rotor

moments from the pylon, and the blades were designed with conventional negative

pitch-flap coupling to reduce rotor flapping during low-speed maneuvers. Develop-

ment of the XV-3 aircraft identified many of the dynamic problems of tilt-rotor

aircraft, including proprotor whirl flutter, which occurred during full-scale wind-

tunnel testing in the NASA Ames 40- by 80-Foot Wind Tunnel.

With the conclusion of the XV-3 program and the initiation of the Advanced

Composite Aircraft Program leading to the development of the XV-15, considerable

work was done to better understand the shortcomings of the XV-3 design and the

importance of rotor elastic motions, rotor couplings, control system flexibility,

drive train effects, and wing dynamics. Gaffey made an important contribution by

investigating the use of positive pitch-flap coupling for improving flap-lag stabil-

ity of stiff-inplane rotors in high inflow axial flight (ref. 297). Although the

XV-3 used negative pitch-flap coupling to minimize flapping during maneuvers in the

high-speed airplane mode, Gaffey showed that a possible coalescence of the flap and

lead-lag frequencies of the rotor blade could lead to flap-lag instability. The use
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of positive pitch-flap coupling prevents such a coalescence, thereby stabilizing

flap-lag motion; Gaffey also showed that positive coupling was equally effective in

controlling flapping motion.

XV-15 Tilt Rotor Research Aircraft

The XV-15 Tilt Rotor Research Aircraft was developed as a joint NASA-Army

effort to demonstrate the solution of the key technical problems of this configura-

tion (fig. 98). Substantial government efforts were devoted to developing the

technology base needed to deal with aeroelastic stability issues of the tilt

rotor. This work has been discussed in detail in sections 2 and 3. At the appro-

priate point, the government initiated a full-scale proof-of-concept aircraft pro-

gram to complete the technology development process. Following a competitive pre-

liminary design phase, Bell was selected to design and manufacture two XV-15 air-

craft. Extensive government participation in this program contributed to its ulti-

mate success. The following will describe some of the aeroelastic stability consid-

erations relevant to the program.

The XV-15 proprotor design was the result of 15 years of technology develop-

ment. The three-bladed proprotors use a gimbaled hub to minimize gyroscopic cou-

pling between the rotor and the pylon. The blades are stiff inplane to avoid air

and ground resonance, and are similar to hingeless helicopter rotor blades in many

respects. Positive pitch-flap coupling of the blades was used to stabilize flap-lag

motion and to minimize rotor flapping during maneuvers, based on Gaffey's findings

described above. The blade flap frequency was chosen, in part, to minimize pylon

stiffness requirements for proprotor whirl-flutter stability. Gaffey et al.

(ref. 298) and Johnson (refs. 270,272,299) summarize much of the dynamics-related

technology development during aircraft design.

The results of the dynamics testing of the XV-15 aircraft are reported by Marr

et al. (ref. 300) and by Bilger et al. (ref. 301). The aeroelastic stability of the

aircraft has been cleared to speeds up to 300 knots at altitude. At very high

speeds (and at high altitude with the reduction in the speed of sound), lift diver-

gence over a significant portion of the rotor is stabilizing for proprotor

dynamics. XV-15 whirl-flutter stability was not a problem.

The successful development of the XV-15 aircraft was the culmination of efforts

to demonstrate the ability to effectively control potential aeroelastic instability

that hindered acceptance of the revolutionary tilt rotor concept. The NASA and Army

contributions in research and the development of the basic technology, as well as

management of the XV-15 aircraft program, were major accomplishments.

V-22 Osprey Aircraft

The V-22 Osprey tilt rotor being developed by the U.S. Marine Corps is tangible

proof of the potential brought to fruition with the XV-3 and XV-15 research air-

craft. The development of the V-22 is benefiting from significant support from NASA

427



and Army researchers and experimental facilities. Activities in the area of aero-

elastic stability will be discussed below.

A detailed summary of the dynamic stability analysis and testing of the pro-

posed V-22 tilting proprotor system is presented by Popelka et al. (ref. 302). An

initial rotor design by the Bell-Boeing team used XV-15 technology with a three-

bladed, stiff-inplane, gimballed hub rotor system. However, after initial testing

in the Langley Transonics Dynamics Tunnel, aeroelastic stability characteristics

were found to be poor. Because of the improved rotor blade airfoils with a higher

lift-curve slope, rotor aerodynamics effects reduced the proprotor whirl-flutter

stability boundary. Since the rotor precone angle was chosen for hover, destabiliz-

ing negative pitch-lag coupling was generated in the airplane mode. To reduce this

coupling, lower the effective pitch flap coupling angle, and reduce the resultant

aerodynamic moment transmitted to the rotor hub as well, a coning hinge was added to

each blade. The result of this design modification was to markedly improve the

whirl-flutter stability well beyond the operational envelope of the V-22 aircraft.

This gimballed-coning hub required the modification of the Bell Helicopter dynamics

prediction code and the codes of Kvaternik (ref. 99) and Johnson (ref. 94). This

new hub configuration was also used in predicting the dynamic performance of a high-

speed tilt-rotor design (ref. 303) using the modified analysis of reference 94.

Although a great deal has been learned about tilting proprotor dynamics, future

designs will likely use more advanced hub configurations (benefiting from the use of

composite materials and redundant load path designs) requiring new analyses. Higher

airspeeds will require better understanding of the influence of compressible aerody-

namics on proprotor stability. True optimization of the design process for rotor-

pylon-wing aeroelastic stability has yet to be attempted. Also, the use of active

controls has yet to be fully investigated for the potential of improving tilting

proprotor stability characteristics.

OTHER ROTOR SYSTEMS

In addition to the rotor systems described in the previous sections, government

research and development efforts have also addressed the aeroelastic stability of a

number of other rotor configurations. These will be briefly described below.

The search for high-speed aircraft having vertical takeoff and landing capabil-

ity has led to consideration of a number of configuration concepts. The compound

helicopter has received much attention, and slowing, stopping, or stowing the rotor

has been studied as a way of minimizing or eliminating the aerodynamic problems of

operating rotors at high forward speeds. All of these concepts involve high advance

ratio conditions. Watts et al. report results of 40- by 80-Foot Wind Tunnel tests

of a Lockheed gyro-stabilized slowed-stopped hingeless rotor (ref. 304). Aeroelas-

tic analysis and comparisons with test data were undertaken to determine the ability

to predict coupled rotor-gyro stability under extreme operating conditions of low
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rotor speed and very high advance ratios. Results showed that relatively simple

aerodynamic theory was reasonably accurate for these conditions.

In the course of development of advanced bearingless-rotor systems, valuable

experience has been gained from earlier development of bearingless helicopter tail

rotors constructed from composite materials. The goverment has supported research

and development on several such systems where aeroelastic stability required careful

considerations in design. Maloney described the elastic pitch beam rotor developed

by Kaman, a two-bladed teetering rotor using a fiberglass flexbeam for blade-pitch

change motion, coning deflections, and chordwise bending (ref. 305). The rotor was

designed for application to full-scale aircraft and was tested and demonstrated to

have acceptable stability characteristics.

Boeing Vertol also gained bearingless rotor experience with a tail rotor appli-

cation. In the course of development of the YUH-61A UTTAS aircraft prototype, a

mechanically simple but structurally advanced four-bladed stiff-inplane fiberglass

tail-rotor was introduced. This rotor used a cantilever torque tube configuration

that permitted significant aeroelastic coupling of bending and torsion motions.

During development testing a number of instabilities were encountered including

stall flutter and high-amplitude lead-lag limit cycle motions. A stable configura-

tion evolved through extensive trial and error testing and modifications. Because

of the complex behavior of the bearingless rotor, analytical methods were of limited

use in predicting or identifying solutions to observed instabilities. The extensive

aeroelastic stability data obtained in this program were sufficiently valuable,

however, that it was documented (under government sponsorship) by Edwards and Miao

(ref. 306).

The Sikorsky ABC compound helicopter was developed under sponsorship of the

U.S. Army. The two three-bladed coaxial, high-flap stiffness rotors form a unique

stiff-inplane hingeless-rotor system. To confirm the general adequacy of the

design, including aeroelastic stability, the flight rotors were tested in the

40- by 80-Foot Wind Tunnel (ref. 307); flight-test results were reported in refer-

ence 308. Without auxiliary dampers, the lead-lag damping of the blades was very

low, but adequate stability was maintained throughout the flight envelope.

The constant-lift rotor (CLR) and free-tip rotor (FTR) designs use airfoil

sections that are free to pivot on the spar of the rotor blade in order to maintain

nearly uniform lift during forward flight and thereby minimize the vibratory

response of helicopter rotor blades in forward flight. However, the additional

degrees of freedom provide more opportunities for aeroelastic stability, and inves-

tigations of the flap-lag-torsion stability of these design were carried out by

Chopra for the hover flight condition (refs. 309,310). With suitable selection of

aeroelastic design parameters, it was possible to identify stable configurations.
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5. CONCLUSION

The material presented herein shows the extensive involvement of the Army and

NASA in rotorcraft aeroelastic stability research. In most of the areas addressed,

significant technology advances have occurred as a result of this research. Some of

these areas were essentially nonexistent 20 years ago. As a result, the technical

community is in a much stronger position to deal with the risks of aeroelastic

instability of new rotor systems. In this section, the key contributions of Army-

NASA research will be summarized, followed by recommendations for future efforts.

SUMMARY OF ARMY-NASA RESEARCH CONTRIBUTIONS

I. A substantial capability for predicting helicopter and tilt-rotor aeroelas-

tic stability now exists, capable of treating rotorcraft structural dynamics and

aerodynamics in considerable detail. Hover flight conditions are relatively

straightforward, and very substantial progress has been made in forward flight

prediction capabilities. In addition to conventional articulated-rotor systems,

hingeless-rotor stability analysis is now nearly routine, and bearingless rotors can

be satisfactorily treated in many respects. Prediction capability resides in a

number of different analyses, many of which have been extensively validated with

experimental data.

2. A comprehensive understanding of the aeroelastic stability characteristics

of hingeless rotorcraft now exists. This includes nonlinear bending-torsion cou-

pling, structural flap-lag coupling, the influence of kinematic aeroelastic cou-

pling, the effects of aerodynamics and rotor body coupling on aeromechanical stabil-

ity, and the effects of dynamic inflow and dynamic stall on aeroelastic stability.

The differences between soft- and stiff-inplane hingeless rotors have been identi-

fied, and this has contributed to shift emphasis away from stiff-inplane and toward

soft-inplane configurations for new rotorcraft.

3. The technology base for tilt-rotor aeroelastic stability has expanded

substantially. Validated prediction codes now exist to treat fully coupled systems,

including rotor, pylon, wing, and fuselage dynamics. Parametric studies have con-

tributed to a good general understanding of tilt-rotor systems including the effects

of rotor-blade in-plane, pitch, and torsion motions, drive train coupling effects,

and compressible airfoil aerodynamics.

4. An extensive experimental data base has been generated, for small-scale

models and full-scale aircraft, for both helicopter and tilt-rotor configurations.

The data are of high quality, much of them obtained from experiments specifically

designed to acquire data for correlation with prediction methods.

5. A solid theoretical basis for the structural dynamics of nonlinear beams

has been established. The subject has been investigated by numerous researchers,

and the theory has been validated experimentally. The moderate deformation theory,
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valid for small strain, has been extended from moderate rotation to large rotation

deformations. Advanced nonlinear finite-element methods are being developed and

characteristics of composite materials can now be treated for some simple cases.

6. Dynamic inflow theory is a substantial development that has found wide

acceptance by rotorcraft aeroelasticians. It has been placed on a rigorous theo-

retical foundation and has been extensively validated with experimental data.

Because of its accuracy, simplicity, and computational efficiency, it has been found

useful in other disciplines such as rotorcraft flight dynamics. It is also amenable

to refinement for application to higher-frequency aeroelastic phenomena.

7. Mathematical methods for solving rotorcraft aeroelastic stability equations

have also advanced significantly. Floquet theory for periodic coefficient linear

systems is now in common use and the rotating-to-fixed system transformation has

been formalized as multiblade coordinates. Recent work has also demonstrated sig-

nificant potential for the use of symbolic processors for automatic generation of

the complex multi-degree-of-freedom rotorcraft equations of motion.

8. In addition to generic rotorcraft aeroelastic stability research, invalu-

able knowledge and progress have resulted from full-scale systems design, testing,

and development of advanced rotorcraft and rotorcraft components. These efforts are

the final proof of the contributions of aeroelastic stability research develop-

ment. Full-scale development and flight test of aircraft such as the Bell XV-15 and

the Boeing Vertol BMR have been particularly effective in demonstrating mastery of

aeroelastic stability technology for critical dynamic phenomena.

RECOMMENDATIONS

Although the last 20 years have witnessed great progress in the technology of

rotorcraft aeroelastic stability, not all of the problems have been solved. A great

many pressing needs and attractive opportunities remain, and these should be vigor-

ously pursued. As new rotorcraft systems evolve, continual emphasis will be

required to address these new problems. The following general recommendations are

offered for consideration.

I. It is usually taken for granted that aeroelasticians can apply Newton's

second law without error and when the results of analysis are unsatisfactory the

aerodynamic theory is often faulted. There is evidence that structural dynamics

analysis is not yet adequately understood and that prediction of rotating-beam

dynamics is not yet solved. More experimental data are needed. The most complex of

all rotorcraft structures are rotor hubs, blades, and blade-to-hub attachments; they

deserve more attention under the influence of pure inertial loading.

2. Vibration testing of rotating blades in vacuum should continue and be

expanded to include more structurally complex blade and hub configurations, includ-

ing nonuniform properties, typical bearingless configurations, and blade structures

composed of composite materials. Careful experiments, correlated with analysis, may
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reveal analysis deficiencies in solid mechanics, material properties, and structural

damping effects.

3. The structural mechanics basis is now available for a large-rotation small-

strain beam theory. Such development should be continued, and a modeling approach

should be included for anisotropic materials. This will provide a capability to

analyze fully the most complex structural rotor-blade flexbeam configurations now

envisioned.

4. As the primary structural material for rotor blades, fiber-reinforced

composites deserve the full attention of the aeroelastician. Capability of modeling

and analyzing composite materials for rotorcraft applications needs to be substan-

tially improved.

5. Finite-element methods are necessary for effective aeroelastic analysis of

future rotorcraft. These methods need to be made more effective for dealing with

rotating blades and for coupling rotating and nonrotating structures.

6. Computational efficiency of rotorcraft aeroelastic analysis needs to be

improved. As the number of degrees of freedom increases, the solutions for nonlin-

ear systems in forward flight have become more difficult. The trim and dynamic

equilibrium solutions need to be improved and made more robust. Without practical

solution methods, the benefits of improvements in structural and aerodynamic theory

may not be realized.

7. Many of the analytical prediction methods developed have emphasized narrow

research investigations. Prediction capability for a broad range of applications is

needed. Prediction capability of research codes should be incorporated into compre-

hensive analyses (e.g., 2GCHAS) to make the technology more readily available to the

designer.

8. More attention should be devoted to linear, three-dimensional unsteady

aerodynamics theory for rotor-blade flutter analysis. In the age of computational

fluid dynamics, numerically efficient methods are needed for rapid flutter analysis

of rotor blades when stall and shocks are not present. New blade- and tip-shape

configurations will depart from the traditional design practice of chordwise coinci-

dent elastic, aerodynamic, and mass centers, and thus will require more attention to

deal with classical flutter.

9. At the same time, the most advanced unsteady aerodynamic research capabili-

ties, focused on formulations for aeroelastic stability, should be directed at

nonlinear problems of transonic flow and airfoil stall. In addition, a better

understanding of the role of dynamic stall on rotor-blade flutter in forward flight

is needed.

10. An excellent experimental data base has been obtained for small-scale,

low-tip-speed hingeless and bearingless rotors and rotor-body systems. This data

base should be expanded to include representative full-scale tip speeds and higher

Reynolds numbers. Structural configurations should include examples of both simple
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and complex blades. Emphasis should be on forward flight, but these models need to

be fully tested in hover as well. Isolated rotors are best; the effects of rotor-

body coupling are much more tractable analytically.

11. Rotor-blade flutter experiments should be conducted for configurations

having significant chordwise offsets of aerodynamic, mass, and elastic centers to

test new unsteady aerodynamic theories and gain experience with more advanced blade

design concepts.

12. Full-scale rotor testing should be maintained to provide periodic exposure

to the real world environment of aeroelastic stability.

13. Directed analysis assessment correlation exercises should be continued.

These provide unique opportunities to address and correct unwarranted assumptions,

derivation errors, coding errors, and other anomalies of individual analysis

methods. To achieve maximum return, the causes of discrepant results need to be

traced back to their source.

14. The tilt rotor is a key vehicle of the future. The technology base has

grown enormously in the past 15 years, and it must continue to advance. Analyses

tailored to the unique structural and aerodynamic features of the tilt rotor need to

be pursued. Modeling compressible aerodynamics needs to be better understood and

potential applications of active controls to improve stability characteristics

should be pursued.

15. Research on the fundamental aeroelastic stability characteristics of

bearingless rotors should continue. Notwithstanding the extensive results obtained

to date, a sure formula for a damperless bearingless rotor has eluded the technical

co.unity. Research should continue in order to find a solution for this problem.
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TABLE I.- TECHNOLOGY BACKGROUND FOR ROTORCRAFT AEROELASTIC

STABILITY: PRE-1970 PERIOD COMPARED WITH POST-1970

CATIONS
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FLOQUET THEORY

NONLINEAR MULTIPLE LOAD

PATH STRUCTURES
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2-D/3-D AERO
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DYNAMIC STALL

TRANSONIC AERO

COMPLEX/AEROM ECHANICAL
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Figure 1.- Nonlinear torsion of an elastic cantilever beam resulting from simulta-

neous flapwise and chordwise bending.
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Figure 2.- Experimental arrangement for inducing nonlinear torsion by subjecting an

elastic cantilever beam to combined flatwise and edgewise bending by varying load
angle of tip-mass gravity force.
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Figure 3.- Static deflections of Princeton beam compared with theoretical predic-

tions. (a) Flatwise deflection. (b) Edgewise deflection. (c) Torsion
deflection.
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Figure 9.- The effect of axial strain on torsional stiffness for a beam of circular
cross section.
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Figure 11.- Modeling a rotorcraft system with the elements and subsystems of GRASP.
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Figure 12.- Lockheed 7.5-ft-dim hingeless rotor model installed in Aeroflight- 
dynamics Directorate 7- by 10-ft wind tunnel. 
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Figure 13.- Effect of dynamic inflow on static hub moment response derivatives of a 
hingeless rotor in hover at 4" collective pitch. 
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Figure 14.- Effect of dynamic inflow on static hub moment response derivatives of a

hingeless rotor in forward flight at 0° collective pitch.
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Figure 15.- Effect of mean inflow and advance ratio (contained within static inflow
model) on a typical rotor hub moment response derivative.
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Figure 16.- Effect of dynamic inflow on frequency response of blade flapping to

blade pitch excitation of a hovering rotor at 2° collective pitch.
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forward flight at 0.51 advance ratio and 0° collective pitch.
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Figure 21.- Effects of dynamic inflow on the coupled rotor-body frequencies of a

helicopter model in hover at 0 ° collective pitch. (a) Without dynamic inflow.

(b) With dynamic inflow.
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Figure 22.- Flowchart for derivation and solution of aeroelastic stability

equations with an automatic symbolic manipulation program.
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Figure 24.- Floquet theory results for contours of constant damping for spring

restrained hinged-rigid blade in forward flight: p = 1.15.
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Figure 25.- Comparison of approximate constant coefficient multiblade equations and

exact Floquet theory for frequency of hinged-rigid blade in forward flight:

p = 1.1, y = 6.
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Figure 26.- Modeling of hingeless rotor blade for flap-lag stability analysis.

(a) Hub and blade segments of elastic rotor blade. (b) Hinged-rigid blade

representation with hub and blade flap-lag spring systems.
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Figure 27.- Basic flap-lag stability boundaries for hinged-rigid blade in hover:

R = O, y = 5.0, o =:0.5.
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Figure 28.- Locus of lead-lag mode roots of hinged-rigid blade flap-lag system in

hover for stiff- and soft-inplane configurations having variable flap-lag

structural coupling: p = v_, y = 5, o = 0.05.
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Figure 29.- Effect of pitch-lag coupling on flap-lag stability boundaries in hover

of soft- and stiff-inplane hinged-rigid blades: p = F_7_, y = 5, o = 0.05.
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Figure 30.- Effect of hinge sequence on flap-lag stability of hinged-rigid blade in

hover: e = 0.4 rad, y = 5, o = 0.05, R = O.
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Figure 32.- Comparison of flap-lag instability for offset-hinged-rigid blade with
elastic blade in hover: 8 = 0.2 tad, y = 10, o = 0.05.
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Figure 33.- Comparison of flap-lag stability boundaries of elastic blade in hover

calculated with modal and finite-element methods: mFI = 1.15, y = 5, o = 0.1.
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Figure 34.- Effects of unsteady aerodynamicson flap-lag stability of a hinged-rigid

rotor blade in hover: p = 1.1, eo = 0.1 rad, y = 8, a = 0.05, R = O, b = I.
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Figure 36.- Effects of reverse flow on lead-lag_damping of elastic blade flap-lag

analysis in forward flight: $o = 0.15 rad, UF1 = 1.175, UL1 = 1.283, y = 10,
o : 0.05.
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o = 0.05.
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elastic blade flap-lag analysis: p = 1.125, w = 0.732, CW = 0.005, y = 5.5,
o = 0.07, R = 0.6.
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Figure 45.- Two-bladed 5.5-ft-diam flap-lag model rotor for hover experiments. 

.ap- Figure 46.- Hub flexures to simulate spring restrained hinges for rigAu blade f 
lag model rotor. 
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Figure 49.- Three-bladed flap-lag model rotor in 7- by 10-Foot Wind Tunnel. 
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Figure 74.- Small-scale rotor model for coupled rotor-body stability experiments 
with non-airfoil blades to simulate in vacuum conditions. 
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Figure 76.- Small-scale rotor model for coupled rotor-body hover stability experi- 
ments with 5.5-ft-dim three-bladed rotor. 
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Figure 86.- Small-scale rotor, pylon, wing tilt-rotor research model installed in 
Langley Transonic Dynamics Tunnel. 
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Figure 87.- Full-scale semispan rotor-pylon-wing model installed in Ames 40- 
by 80-Foot Wind Tunnel. 
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Figure 91.- Effects of compressible aerodynamics on tilt-rotor wing bending-mode

damping in cruise flight.
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Figure 92.- Langley Transonic Dynamics Tunnel Model experimental stability measure-

ments of small-scale V-22 tilt-rotor models compared with predictions of various

theories. (a) CAMRAD. (b) PASTA. (c) CAMRAD and DYN4.
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Figure 93.- Comparisons of lead-lag damping predicted by several aeroelastic sta-

bility analyses for a small-scale elastic blade flap-lag-torsion model in hover

including experimental data; experimental data is shaded region. (a) No droop

and stiff torsion flexure. (b) -5.0 ° droop and soft torsion flexure.
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Figure 95.- Lockheed AH-56A Cheyenne installed in 40- by 80-Foot Wind Tunnel. 
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Figure 96.- Boeing Vertol bearingless main rotor (BMR). 
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Figure 97.- A damperless bearingless-rotor hub design for the ITR/FRR rotor. 

Figure 98.- Army/NASA-Bell XV-15 Tilt Rotor Research Aircraft in airplane 
configuration. 
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